

The Chair of **Future Communication: Organization and Medium Term** Perspective

Prof. K. Tutschku (kurt.tutschku@univie.ac.at)

The Chair of Future Communication: Organization, Research and Teaching Perspective (November 2010)

Faculty of Computer Science

The University of Vienna

Departments

Faculty of Computer Science

Distributed and Multimedia Systems

Chairs **Distributed Systems**: Prof. G. Haring **Future Communication:** Prof. K. Tutschku Prof. W. Klas Multimedia Information Systems: Software Architectures: Prof. U. 7dun Theory and Applications of Algorithms: Prof. M. Henzinger Knowledge and Business Engineering Prof. S. Rinderle-Ma Workflow Systems and Technology: Knowledge Engineering: Prof. D. Karagiannis

Scientific Computing

Data Analysis and Computational Sys.: Software Science:

Didactic Center for Computer Science

Computational Science Center

Computational Technologies and Applications

Prof. W. Winiwarter Prof. S. Benkner

Additional Centers:

endowed by

(OM

ÂÌ

Future Communication

Chair of

Faculty of Computer Science

(Dr. W. Gansterer)

(Prof. E. Neuwirth) (Prof. O. Scherzer)

Group Members

Head

(since 01.09.2008)

Administration

Kurt Tutschku

J. Baier-Mathews	(secretary)
O. Michel	(system admin.)

Full Time Scientific Staff (senior staff and Ph.D. students)

Florian Metzger(from 01.05.2010)Albert Rafetseder(from 01.03.2009)David. Stezenbach(from 01.10.2010)N.N.(advertised)

Student Helpers

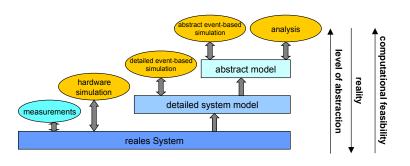
M. Alberer, B. Grubor, A. Lukovics, L. Pühringer, S. Seebacher, C. Vorhemus

Post-Graduates (temporary scientific staff, Ph.D students)

Dominik Klein(Univ. of Würzburg, Germany, Mar. 1st - Aug. 31st, 2009)Ricardo Matos(Univ. of Aveiro, Portugal, Apr. 1st - Jul. 15th, 2009)Christian Schwartz(Univ. of Würzburg, Germany, Mar. 1st - Sep. 31st, 2010)

Collaboration with external Ph.D. students Thomas Zinner (Univ. Würzburg)

Faculty of Computer Science



Research Topics

- Future Internet, network virtualiz
- Future network control plane ٠
- P2P content distribution (mobile, ٠
- Quality-of-Service and Quality-of-Experience
- Future Internet services, service ٠ virtualization and Internet of Things
- Traffic-oriented network management ٠
- Performance evaluation (Event-based Simulation, Analysis) ۲
- P2P algorithms (mediation, resource exchange), self-organization •

Future Services				
Future Transport				
alization	Architectures and Protocols	Performance Evaluation	- anization	
ile, wireline)	Archand	Perf Eval	Self- Orgai	

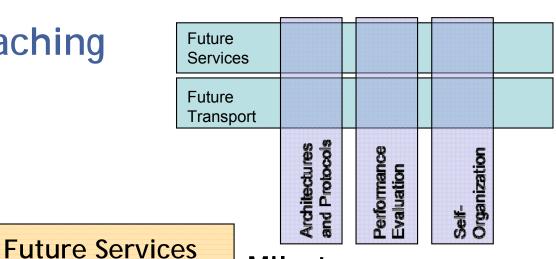
niversität

Faculty of Computer Science

Future Communication

Chair of

Research and Teaching Instruments



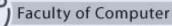
Vienna Think Tank for Future Communication Focus on industry collaboration Endowed by Telekom Austria

Academic Excellence Complementing courses in Bachelor prog. Ph.D. courses School of Internet Architects?

Lab (planed)

Milestones

- Two EuroNF funded Ph.D. courses (Simulation, 2009; Network Virtualization, 2010)
- (Re)-engineering of 5-6 ٠ lectures (Rechnernetze, Netzwerktech. f. MA,, Simumlationstechnik, OS & Algo. f. VNS, Sys. Arch f. zukünftige Netze)
- 17 Bachelor theses in • 2009-10
- Contribution to curricular ٠ program



endowed by



Future Communication

Chair of

Faculty of Computer Science

Involvement in Future Internet Activities

Collaboration with the following Future Internet projects:

- Akari (Japan, K. Tutschku was member of NICT)
- EuroNF (Europe, Strategic Officer, WP leader)
- G-Lab (Germany, application and association)
- OneLab2 (Europe, association)
- GENI/PlanetLab (USA, listener/member, participant to GEC3/4/6/7)
- Setup of first GENI/GpENI-Nodes in Austria (subproject of GENI)
- Invited talk on Network Virtualization at Future Internet Cluster (FIC 2010)
- Advisory board European PPP project "Future Internet"
- Invited talk on Comparison FI Architectures at EU-sponsored Future Internet Assembly (FIA 2010)
- Invited talk on Network Virtualization at DFN-Forum 2010
- Co-Lead in Austrian FI PPP application
- Member of EuroNF steering board

Lead or participation in the following Future Internet workshops

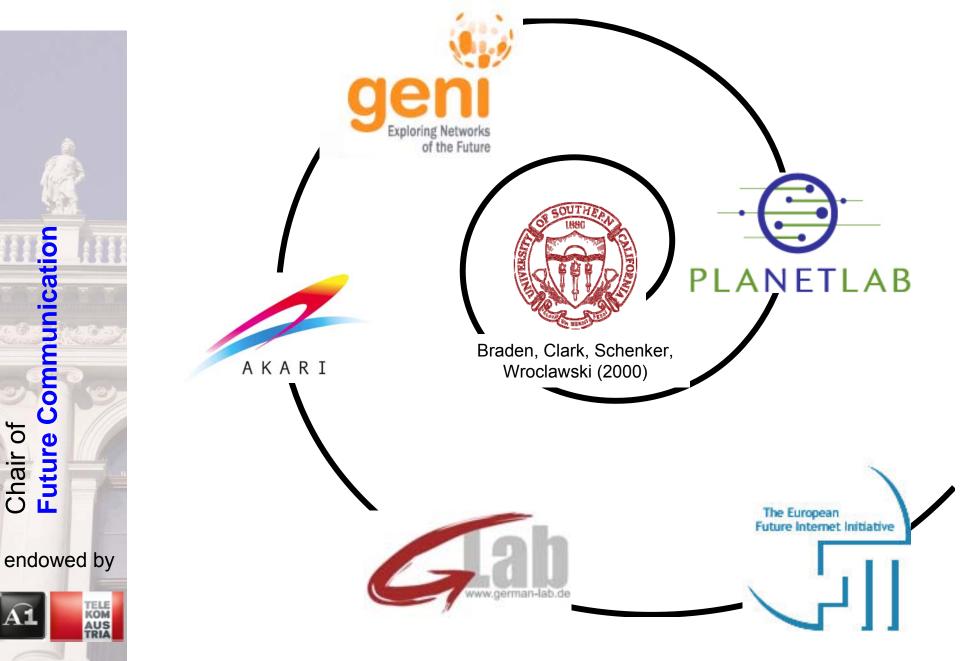
- 20th ITC Specialist Seminar on Network Virtualization (TPC Chair)
- Network virtualization workshop at KIVS'09 (TPC)
- Network virtualization (VISA) workshop at Sigcomm'09 (Reviewer)
- VISA workshop at Sigcomm'10 (TPC)
- Track Chair for Network Virtualization at the Future Internet Symposium (FIS 2010)
- Reviewer for EU FP7 program for Future Internet projects

AUS

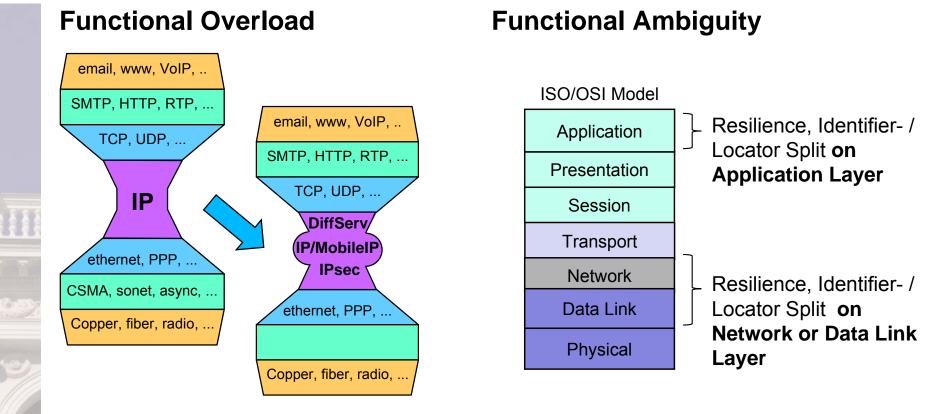
Chair for Future Communication Prof. Dr. K. Tutschku Institute for Distributed and Multimedia Systems Faculty for Computer Science

How to Evaluate and Compare Architectures: State of the Art and Beyond

K. Tutschku (kurt.tutschku@univie.ac.at) and G. Haring (guenter.haring@univie.ac.at)



- What is an architecture?
- Comparison and evaluations of architectures
 - Structure, comparison, and quality
 - Formulation of metrics
 - Relation of attributes and milt-dimensional evaluation
 - An evaluation recipe
- Conclusion


Communication

Chair of Future C

endowed by

KOM AUS TRIA

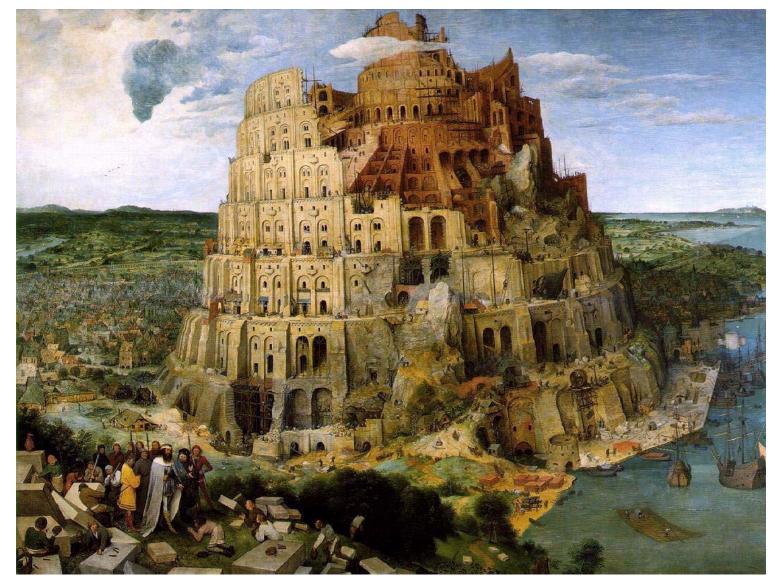
IP "Hour Glas" Architecture and other Reference Concepts

- We probably **need** a new reference architecture!
- How to separate fcts? An where to place fcts?
- Which architecture is "better", i.e. "A > B"
 - Mapping to a numerical scale?
 - What is an architecture reference model?

Communication Chair of Future C endowed by ком

AUS

Churches


Train Stations

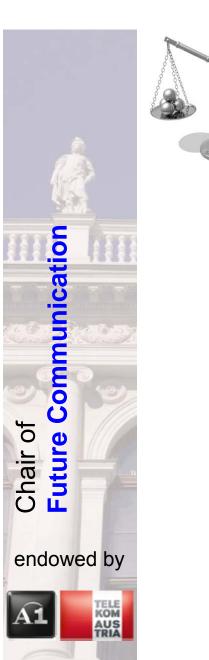
- Each architecture/system has a specific purpose!
- Louis Sullivan: "Form (ever) Follows Function" → set of requirements (multi stakeholder goals)
- Is it possible/feasible to to compare architectures for different purposes? Or different views of one architecture?
 - If yes, under which which circumstances, constraints, conditions, ... ?
- Normalization/coordination is required! What are the interfaces?

Tower of Babel

endowed by

TELE KOM AUS TRIA

Chair of Future Communication


What is a Reference Model?

- From software architecture: OASIS (Organization for the Advancement of Structured Information Standards, 1993-2009): *Reference Architecture Foundation for Service Oriented Architecture* (Version 1.0)
 - Abstract framework for understanding
 significant relationships among entities of some environment
 - Consists of a minimal set of unifying concepts, axioms and relationships within a particular problem domain
 - Is independent of specific technologies, standards, implementations, or other concrete details.

- Separation of Concerns (E. W. Dijkstra, 1974; C. Reade, 1989)
 - Concern: any piece of interest or focus in a program
 - Process of separating a computer program into distinct features that overlap in functionality as little as possible
 - "... isolation for the sake of its own consistency ..."
 - Achieved by modularity and encapsulation;
 facilitated e.g., by layered designs; other concept
 possible ("heaps" instead of "stacks", e.g. Braden,
 Faber and Handley, ACM Sigcomm CCR, Jan.
 2003)
- \rightarrow How does this relates to reality?

wien Example: Separation of Concerns

Is a simple three-layer architecture suitable?

Classification of project sessions at 3rd EU-Japan
 Symposium on Future Internet (Oct. 2010)

T1/S3: Sensor Networks Architecture and Applications	T3/S1: Virtualization and Clouds / Combined Dication Combined Com. service platforms		
T3/S2: Trust and security	T3/S3: E2E Interactive /		
T1/S2: Intelligent / Content Centric Networking MediationS4: Virtualization and Architectures			
T1/S1: All optical tech-nologies and networks	FIRE: Flow management/switching, OpenFlow		

- \rightarrow At least suitable for strategic decisions
- → Concerns guide also selection of quality attributed

Compare Quality of Architectures

Communication

Chair of

Future

endowed by

KO№

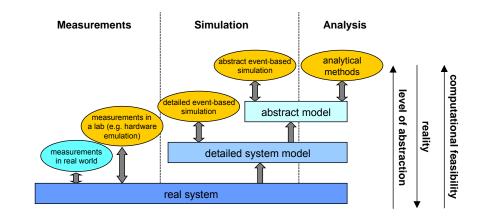
- **Quality** (from Latin *qualitas*): an attribute or a property. Attributes are ascribable (by a subject), whereas properties are possessable.
- Depends on criteria applied to it.
- Quality as defined by ISO 9000: "Degree to which a set of inherent characteristics fulfills requirements"
- Quality of Architectures
 - Non-functional quality: how an architecture is supposed to be
 - Fault-tolerant, backward compatibility, extensibility, maintainability, availability, security, usability, flexibility (e.g. for the **Polymorphic Internet**) ...
 - Hard to quantify
 - Functional quality: what a architecture is supposed to do
 - Fast, efficient, required/consumed resources
 - Easier to quantify

Wien How to Measure and Evaluate Quality?

Communication

Future

endowed by


CON

Chair of

- Basis: measurable quality attributes for architectures (features)
 - Various characteristics, metrics, dimensions, ...
 - For example: load, throughput, MTBF, ...
- \rightarrow In general two alternatives:
 - feature is measurable or
 - feature can be made measurable
- → Overall quality model: systematic (e.g. weighted , normalized) combination of quality features
 - Quantification of obligatory, mandatory, or elective features
- \rightarrow Formulation of axioms for quality metrics

Relatively easy: numerical performance evaluations of ۲ architectures wrt QoS (loss, delay) and eventually QoE (MOS)

- Problem: vaguely defined quality attributes for archi-• tectures,
 - Example "maintainability" \rightarrow In general: which measurable attributes determines the quality subject and in which way they related with the subject?
- → Need: Goal-oriented derivation of appropriate metric (with minimization of the cardinality of the attribute set)
 - Be appropriate for the context! \rightarrow Context may vary

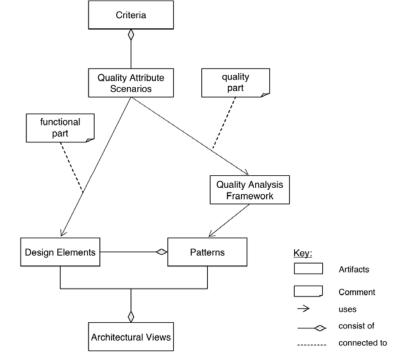
Chair of

Wien Formulation of Quality Metrics

Communication

Future

endowed by


KOM

AUS

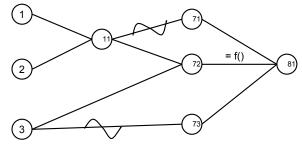
Chair of

From software design and evaluation: **SACAM framework**(Software Architecture Comparison Analysis Method; C. Stoermer, et al., 2003)

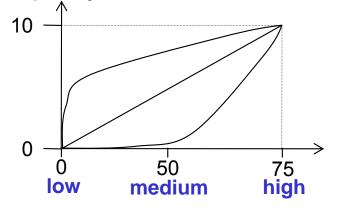
- Reasoning as to whether quality attributes are satisfied by an architecture candidate
- Assistance in searching for particular indicators in the architectural documentation
- → Score each architecture on a scenario basis

Communication

Future

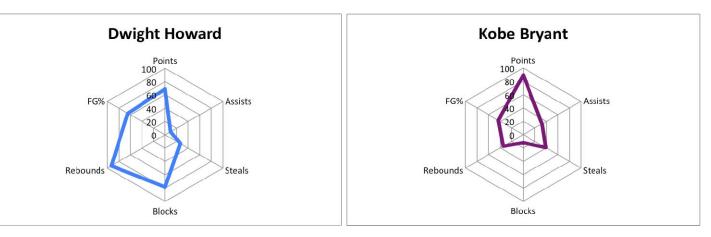

endowed by

ком


Chair of

Cause-and-Effect Graph

- Separation into measurable sub-metrics
- Specify causes and effects for sub-metrics (Div&Conq)


- Various relationships: arithmetic/geometric mean, etc.
- Identify functional relationships
 - Define Score Functions, e.g. with normalized value range [0...10], for score of quality attributes
 - Numerical values
 - Properties

- Problem: Comparison of scores N dimensions
- → Radar (Kiviat) graphs or star plots (Chambers, 1983)
 - Displaying multivariate data, each star represents a single observation.
 - Typically, multi-plot format with many stars on each page and each star representing one score with many dimensions

KOM

Communication

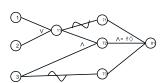
Chair of

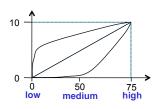
Future

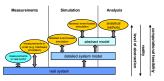
Wien A First Architecture Evaluation Recipe

tion

Commun


Future


endowed by


CON

Chair of

- Acknowledge the plurality of Future Internet architectures
 - \rightarrow define and apply *comparison* scenarios
- Make causally determined decisions on
 - Cause-and-effect graphs
 - Specify scoring dimensions and scoring functions and determine weights
 - Compute base quality/performance attributes by mathematical performance analysis
 - Use multivariate comparison

- Presentation of various comparison methods from a variety of disciplines
 - Network design, software design, operations research, ...
 - Comparison based on scenarios (= no unified architecture?)
- → Identify causal relationships (= multi-disciplinary modeling)
 - Many open questions
 - Specification of metrics, e.g. for dynamic networks with node churn
 - Which and how many quality dimensions are needed?
 - Is relative comparison sufficient? (no absolute values)
 - How to do sensitivity analysis?
 - May improve the "separation of concerns"!