D UNIVERSITÄT BERN

Forschungsseminar, Institut für Telematik, KIT

Service-Centric Networking

Torsten Braun, Universität Bern, Switzerland joint work with Volker Hilt, Markus Hofmann, Ivica Rimac, Moritz Steiner, Matteo Varvello (Bell Labs, Holmdel, NJ, USA) and Andreas Mauthe (Lancaster University, UK) braun@iam.unibe.ch, rvs.unibe.ch

b UNIVERSITÄT BERN

- > Introduction
- > Content-Centric Networking
- > Service-Centric Networking
- > Conclusions and Outlook

Motivation for Content-Centric Networking

- > Today's network traffic is dominated by information retrieval rather than point-to-point communication between machines or humans.
- Circuit communication model is not considered as appropriate any more.
- Future communication architecture should focus on information objects instead of nodes.
- > Today, wires and memories solve complimentary aspects of the same problem:
 - Wires move information in space.
 - Memories move information in time.
- Future communications architecture should unify both issues. [modification of slides on CCN from NDN and CCNx projects]

UNIVERSITÄT Bern

Traditional Web Retrieval / Web Services

Related Work

D UNIVERSITÄT BERN

- > Peer-to-Peer Networks
 - Construction of overlay networks
 - Content / service discovery,
 - e.g., using distributed hash tables, flooding, random walks, etc.
- > Web Caching
 - Providing content for local users
- > Content Distribution Networks
 - Routing and redirection of HTTP requests
 - Cache management

Content-Centric Networking (CCN)

- > [Jacobson et al., ACM CONEXT, December 2009]
- > Combination of content lookup and message routing
- Idea: describe the users' interests in the message header, but not where to get it.
- > Messages (using XML encoding)
 - Interest: content name, selector
 - Data: content name, signature (info), data
- Hierarchical content names
 - Example: /unibe.ch/braun/lecture/20100405

Related Projects

^b UNIVERSITÄT BERN

- > NDN = Named Data Networking, <u>www.named-data.net</u>
- CCNx = Open Source Core Software Project for Content-Centric Networking, <u>www.ccnx.org</u>
- Scalable and Adaptive Internet Solutions (SAIL), <u>www.sail-project.eu</u>

IP Model

b

U

FIB: Forwarding Information Base

$u^{\scriptscriptstyle b}$

Processing of Interest Message in CCN

- Longest prefix match on content name in Content Store (CS): returning data and discarding Interest
- 2. Pending Interest Table (PIT) match: adding request to PIT and discarding Interest
- 3. Forwarding Information Base (FIB) match: forwarding of Interest towards data
 - FIB population by announcements of content availability)

^b Universität Bern

CCN Model: Match in Forwarding Information

CCN Model: Match in Pending Interest Table

UNIVERSITÄT BERN

Content Distribution

b UNIVERSITÄT BERN

h

U

Naming

^b UNIVERSITÄT BERN

- > Any kind of names are possible \rightarrow flexible naming
- > Examples
 - /unibe.ch/braun/lecture/20100405
 - /kit.edu/Zirkel2/SR367/Projector
- > Support for simple operations
 - %C1.org.ccnx.frobnicate~1~37
 - command in the namespace org.ccnx
 - operation is frobnicate, which takes 1 and 37 as arguments

Routing

^b UNIVERSITÄT BERN

- Longest Prefix Match Routing (as in IP)
- > But: different FIB entry semantics
 - IP: IP address prefix *can be reached* via an outgoing interface for an existing FIB entry
 - CCN: content name prefix *might be reached* via an outgoing interface for an existing FIB entry
- > FIB entries should be populated proactively for known content.
- > Alternatively, searching for content, e.g., using broadcasting

Hour-Glass Models

Content-Centric Networking

> Advantages

- Automatic content distribution
- < 1 round-trip-time
- Minimization of latency
- Minimization of bandwidth
- Local congestion control
- Built-in security
- > Drawbacks
 - Routing as open issue
 - Lacking support of flexible services

b UNIVERSITÄT BERN

Service-Centric Networking (SCN)

⁶ Universität Bern

- CCN is content-centric and encodes a few operations on content as extensions of names.
- > Proposal: Service-Centric Networking
 - Extension of content-centric networking to support services, possibly operating on content.
 - Description of a service using content naming scheme, e.g., /google.com/file-service
 - Service request to invoke a service in Interest message
 - Service response in Data message
- > Services
 - Infrastructure services, e.g., cloud computing services
 - Client-oriented services, e.g., web services
 - Continuous content retrieval and streaming services, e.g., A/V conferencing, streaming

Advantages of SCN

D UNIVERSITÄT BERN

- > No service lookup and service registry
- Caching of service data; extended caching of multimedia data (transcoding)
- > Location-based services
- > Optimized service selection

Uniform Naming for Services (Functions) and Content (Data)

- ^b UNIVERSITÄT BERN
- Services perform (data) processing and are represented by functions to be invoked. Content stores for data.
- Service-centric networking should support both data and functions.
- Object-orientated programming paradigm integrates both functions and data into objects.
 Method calls among objects to invoke functions.
- Proposal: Object names for both services (functions) and content (data), e.g.,
 - /youtube.com/rendering
 - /unibe.ch/braun/lecture/20100405
- Advantages of object-oriented approach
 - Uniform naming
 - Services can be implemented as a set of cooperating objects

Torsten Braun: Service-Centric Networking

SCN Object Types

b UNIVERSITÄT BERN

Addressing Multiple Objects for Composed Services

b UNIVERSITÄT BERN

h

Objectname1
Objectname2
ObjectnameN
Parameter1
Parameter2
ParameterM

Optimization of Service Execution

Example: Video Rendering I

b UNIVERSITÄT BERN

Example: Video Rendering II

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Example: Real-time Audio Conferencing

Real-Time Audio Conferencing Service

^b Universität Bern

Karlsruhe, January 11, 2011

Service-Centric Network

b UNIVERSITÄT BERN

h

Torsten Braun: Service-Centric Networking

Location-Based Services

D UNIVERSITÄT BERN

b

U

Service-Centric Networking and Cloud Computing

UNIVERSITÄT BERN

Session Support

b UNIVERSITÄT BERN

- CCN Interest messages must be continuously submitted for continuous data flow, e.g., VoIP, streaming, and single chunks
- Option: establishment of flows / sessions between service users and service providers, e.g., using OpenFlow, cf. SCAFFOLD (Princeton)

Conclusions and Outlook

- Service-Centric Networking as a new paradigm extending content-centric networking using an object-oriented naming concept
- > Open Issues
 - Implementation architectures
 - Service management
 - Service composition
 - Routing
 - Parameter support
 - Charging
 - Security
 - Wireless ad-hoc networks
 - Delay-/Disruption-tolerant networks

Thanks for your attention !

U

b

D UNIVERSITÄT BERN

> rvs.unibe.ch/research