A dynamic and flexible Access Control and Resource Monitoring Mechanism
for Active Nodes

A. Hess - Technische Universitét Berlin, Germany
M. Scholler - University of Karlsruhe, Germany
G. Schafer- Technische Universitét Berlin, Germany
A. Wolisz - Technische Universitét Berlin, Germany
M. Zitterbart - University of Karlsruhe, Germany

Abstract

Active and programmable networks are new
paradigms in computer networking. Network
nodes have the ability to load and execute special
purpose programs called service modules (audio
transcoder, traffic screening agent, etc.). The service
modules are either stored on the node itself or dynam-
ically downloaded from a service module repository
and installed on the network node. These modules
are designed and implemented by the provider or
by a third party and as it is theoretically impossible
to construct a generic algorithm to determine what
a program does, the introduction of a quantitative
access control mechanism seems to be a promising
approach. Therefore, the standard security mech-
anisms of an operating system must be enhanced.
This paper presents a generic mechanism to ad-
ministratively limit the resources granted to service
modules. The discussed technique is independent of
the programming languages in which the services are
implemented. The presented results, achieved with
a first prototype developed for the active networking
platform AMnet [4] (Active Multicast Network) are
very promising.

1 Introduction

The programmable networking technology provides
among other things a framework for flexible and rapid
service creation on top of existing networks. It uses
enhanced nodes within the network for the provision
of individual application-specific services. This paper
deals with the case that the programmable nodes can
execute services which are loadable on demand from
a service module repository and enhance the func-

tionality of intermediate systems in a flexible man-
ner. A service is composed of one or more service
modules which are linked to a process chain. This
chain is connected to an Execution Environment (EE)
which hands packets to the first module in the chain
and picks up the packet from the last. Those services
cover areas such as media transcoding, semi reliable
multicast, and congestion control.

The execution of services on nodes positioned in the
Internet raises a huge security challenge. As it is the-
oretically impossible to construct a generic algorithm
to determine what a program does, other possibilities
to secure the execution of arbitrary code must be con-
sidered.

Our approach is the supervision of each process
through a quantitative access control mechanism. This
can be realized by supplying each application with an
individual security policy which can be added at run-
time and defines which resources are available for us-
age in which manner and size. The quantitative access
control mechanism consists of two parts: an access
control entity and a resource monitoring entity. The
access control entity is responsible for the adherence
of the security policies of the running services and the
resource monitoring entity observes for every running
service the amount of each resource consumed by it.
Further on, it must be guaranteed that the quantitative
access control mechanism is always able to react re-
gardlessly of the circumstances.

All services for a programmable network differ in
their resource requirements. They can be classified in
two main categories: constant requirements and vari-
able requirements. The first class contains modules
like a stereo to mono audio transcoder where all pack-
ets are processed in the same manner. Such a mod-
ule needs the same resources to process each packet.

Modules like an MPEG color to b/w transcoder also
belong to the first class. Although the processing of
a packet depends on the kind of frame the resource
utilization has a constant upper limit. Semi reliable
multicast and congestion control modules are directly
dependent on external resources like link quality or
system load on other network nodes and therefore be-
long to the second category. Such services are usually
in stand-by mode occupying only a small amount of
resources of the system. The reaction to special occa-
sions contribute significantly to the resource require-
ments of these services.

This paper focuses on availability and access con-
trol as two major security goals for an active network
node. This means that services are available and func-
tion correctly and further on, only authorized entities
are able to access certain resources. Thus, the ad-
ministrator must define a security policy for each ser-
vice he wants to offer. The policy specifies which re-
sources may be used by a service and also to what
guantitative extent they may be used.

An overview of the architecture and a introduction
to the concepts developed for access control and re-
source monitoring are given in the next section. After-
wards the paper is organized as follows. Related work
is presented in section 3. Section 4 focuses on the im-
plementation and performance measurements and sec-
tion 5 concludes and gives an outlook on future work.

2 Adynamic and flexible Access Control and
Resource Monitoring Mechanism

In this section, we present the concept of our dynamic
and flexible access control and resource monitoring
mechanism for an active node. One goal of the mech-
anism is that it should be as generic as possible, i.e.
it should be usable independently of the type of ser-
vices that are deployed on the active node. In other
words, the execution environment provided by the ac-
tive node for the execution of the service should have
no influence on the control mechanism. Further on,
the access control and resource monitoring mecha-
nism should be easily extensible for future security
and monitoring requirements and it should be fine-
grained configurable. Additionally a realization of
the concept without any changes of existing operating
system code and with minimal performance degrada-
tion should be accomplished.

Due to the mentioned reasons we decided to split the

access control and resource mechanism into a kernel
space and a user space part. The user space part is a
daemon which configures the kernel part of the mech-
anism and the kernel part is responsible for the access
and resource control.

2.1 Architecture

The considerations mentioned before lead to the ar-
chitecture shown in figure 1.

‘ Resource Management Daemon ‘

1]
c]
8.2 ©
§ g Resource Control ?
= =
x> 3 User Space
Kernel Space
interception Security
™| module > Policy
t Database

kernel
function

Figure 1: Components of the access control and re-
source monitoring mechanism

For every system call for which an access control pol-
icy exists or which must be monitored an interception
module is inserted into the kernel. For access con-
trol the module contacts the security policy database
to check the access rights of the process to the sys-
tem call. If this test is passed the interception module
updates the appropriate data structures in the resource
monitor database. Both databases transfer their data
to the resource management daemon. This is the cen-
tral node management process. The resource control
process is responsible for module handling and secu-
rity policy setup. The interception module then calls
the standard kernel function belonging to the system
call. No new functionality to handle resources is in-
troduced by the interception module.

In the next section the general technique of how to
intercept a system call is explained.

2.2 System call interception

Most common operating systems make a distinct dif-
ferentiation between application and operating sys-

tem. Each time a service requires an operating system
service (e.g., to open a socket for communication) the
service must send the proper system call to the kernel.
The kernel checks the request of the process and then
it decides whether to fulfill it or not.

By inserting a loadable kernel module, it is possible to
extend the functionality of the kernel. In our case, it
is possible to introduce more detailed decision criteria
in the kernel to determine whether the desired action
is allowed or not.

Service process
/
A

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o e s Nl
Kernel Space

Y
> System Call Table

Interception
Module

Standard Kernel

Figure 2: Interception of a system call

The general method of system call interception is de-
picted in figure 2 and shows the interception of the
socket system call. The user process uses the socket()
command to create a socket for network communica-
tion. As mentioned, a process must execute a system
call to gain access to the operating system services.
Normally this is done by wrapper functions which are
part of standard libraries. The wrapper function puts
the variables to be submitted into the correct order,
and then executes the proper system call. At the entry
point into the kernel, the kernel uses a table — the so
called system call table — for the forwarding of the in-
coming system calls to the corresponding functions.
By changing the destination of a pointer inside the
system call table, we can redirect a defined system call
to another function.

The entry point to the kernel is a good point to in-
tercept certain operations. It would not be sufficient
to intercept the command in user space by modifying
the corresponding wrapper function, as in this case the
programmer could link his own wrapper function stat-
ically into its program or do the system call directly.

2.3 Security - The Access Control Entity

The access control entity is responsible for the su-
pervision of the adherence of the individual security
policies for the running services. The security policy
can specify one of the following restrictions for a re-
source:

1. Grant access: indicates, whether a service is al-
lowed to access the specified resource at all;

2. Access limit: specifies the maximum amount of
the specified resource that can be consumed by
the service;

3. Predefined value: value to be used for a given
parameter (e.g. destination address for a TCP-
connection).

Items 1 and 3 are solely supervised by the access con-
trol. The second item is controlled by the resource
monitoring mechanism. The security entity provides
functions through which the upper consumption limit
of a specified resource for a service can be prompted.
If a service tries to consume a bigger portion of a re-
source than it is allowed to, the corresponding request
is denied. The possibility to setup hard resource lim-
its is necessary to prevent resource exhaustion of the
system. If the access to a resource is once granted
it is irreversible without interaction between the ker-
nel module and the service process. Such an interface
would prevent a generic mechanism.

The mentioned access control mechanism and further
security aspects for active networking environments
are described in detail in [5].

2.4 Resource monitoring

The security part of the mechanism checks the access
rights to the requested resource and reports all illegal
resource requests of services to the resource manage-
ment daemon. The reaction to illegal actions is part of
the configuration of the resource management daemon
and is beyond the scope of this paper.

The resource monitor keeps track of all requests to a
system resource and logs every allocation and deallo-
cation. The resource monitoring module provides the
current, the average, and the maximum resource al-
location of each service to the resource management
daemon. This information characterizes all services
from the constant requirement class. After some time

of monitoring the values of average and maximum re-
source allocation get stable and are, therefore, charac-
teristic for that service.

For all services from the variable resource require-
ments class the monitored data are just a snapshot in-
formation and can not be used for future predictions.
As mentioned before, these service modules can con-
tribute significantly to the resource utilization of the
system and are easy targets of denial of service attacks
due to their service characteristics. To provide avail-
ability, the system administrator might want to limit
the maximal resource utilization of these services.

3 Related Work

The DARPA active network community [1] developed
an architecture for active network nodes. The pri-
mary functional components are the Node Operating
System (NodeOS) and the Execution Environments
(EEs). The NodeOS is responsible for resource man-
agement. Bowman [7] is an extensible platform for
active networks based on the DARPA architecture’s
NodeOS. It extends existing operating systems like
SunOS or Linux to an active node but does not im-
plement an own resource management. It completely
relies on the resource control of the underlying OS. In
contrast to our proposed approach the operating sys-
tems do not support fine-grain resource monitoring
and limitations for service processes and impending
overloads can not be detected.

The Resource Controlled Active Networking Environ-
ment (RCANE) [6] and the Darwin project [3] intro-
duce a fine-grain resource monitoring and accounting
mechanism. RCANE extends the Nemesis Operating
System with special purpose schedulers for CPU, net-
work 1/0, and memory. To achieve this fundamental
mechanisms of an operating system must be changed.
The Darwin project focuses on bandwidth and user
data access restrictions and accounting. Other re-
sources are not regarded in their approach.

The Ariel Project [8] and the Naccio Project [2]
present an access control mechanism for mobile Java
code. Both solutions provide a mechanism to protect
and control the local resources that can be accessed by
Java programs only.

4 Implementation

The concepts described in section 2 are implemented
and tested for the AMnet Execution Environment [4].
The current version of AMnet runs as a software
router on standard PC hardware. The operating sys-
tem is Linux kernel version 2.4. The AMnet node con-
sists of a signaling program, a resource controller, an
EE and a resource management daemon. The service
modules and the Security/Resource Monitor modules
(SR modules) can be statically installed on the node
or downloaded on demand.

The download of an SR module is invoked by the Re-
source Control Process on service startup. The mod-
ule is identified by name and a version number. The
version number can be omitted if any version of the
SR module is sufficient or can be set to indicate that
only versions later than the one specified are appro-
priate. The signaling process returns an error message
to the Resource Control Process if the requested mod-
ule can not be found in the service module repository
and service startup is terminated immediately. A suc-
cessfully downloaded module is put in the local SR
cache and the process is notified that the module is
now available. The Resource Control Process installs
and initializes the SR module.

Service Module Repository Active Node

\

[elzf &]

1.)Service Module
2.)Policy
3.)Digital Signature

Figure 3: Transmission of active code

As depicted in figure 3, the arriving active code is
supplied with a digital signature and a security pol-
icy. The daemon first splits the arrived data into three
parts: active code, policy and digital signature. Then,
the digital signature is verified. If the verification was
successful the security policy of the service is com-
pared with the local security policy of the active node,
whether the active node is authorized to execute the
service or not. If yes, the execution of the active code
can be started.

All downloaded SR modules are also put in the local
SR cache for faster access the next time the module is
needed. The cache is managed by simple aging strat-

egy. For each module a timestamp is saved. When
the SR gets unloaded the timestamp in the SR cache
is updated. If a new SR module is requested and there
is not enough free memory within the cache the SR
module with the oldest timestamp is discarded from
the cache. The procedure is repeated until the down-
loaded module can be put into the cache. This implies
that even modules which are currently active can be
discarded from cache. This is necessary to be able to
run more SR modules than can be cached.

4.1 SR Modules

All SR modules are realized as kernel modules. The
Linux kernel provides a standard interface to insert
and delete kernel functionality at runtime. The config-
uration of such a kernel module can also be changed
at runtime.

For flexibility reasons the SR module is split into a se-
curity and a monitoring part. Each part can be used
independent of the other one. This allows security
checks for system calls which are not monitored or
vice versa.

The parameters of the function call are analyzed by
the monitoring part and the new resource utilization
is calculated. Thereafter, the system call is passed to
the security part to do the security checks. The return
value of the security part defines the proceeding of the
monitoring part. If the access is granted, the standard
Linux system call routine is called and the monitoring
database is updated. Otherwise, an error is returned to
the calling process.

An SR module does not notify the resource manage-
ment daemon on every resource allocation. All col-
lected data about resource allocations are stored in
module variables. The content of these variables is ac-
cessible through the proc-file-system. Every SR mod-
ule which provides a monitoring function must imple-
ment this interface for data access. The user space
resource management daemon periodically polls this
special purpose file to get the information about the
resource utilization.

4.2 SR_Net: An Example of a SR Module for
the control of network access

In this section an example SR module for the control
of the network access is presented. Thus, we focus on
the socketcall() system call. Socketcall(int call, un-

signed long *args) is the entry point for all existing
socket operations, except write() and read() which can
also be used to send and to receive messages using an
existing socket. The operation requested is defined
through the parameter call. Three interesting possible
operations are:

1. SYSSOCKET: The socket() function is used to
create a socket of any supported protocol family.

2. SYS.CONNECT: The function is used to estab-
lish a connection between two communication
endpoints.

3. SYSSENDTO: The sendto() function allows to
send a datagram and specify the destination ad-
dress of the recipient at the same time.

By redirecting the socketcall() system call to our load-
able kernel module we have the possibility to access
all socket functions including the parameters passed.
Thus, the possibility is given to decide corresponding
to the security policy of the requesting process:

Has the process the right to create a socket?

If yes, what kind of socket (Stream, Raw, Data-
gram, ...) is the process allowed to create?

Which destination addresses/domains are al-
lowed for the transmission of data?

The sizes of the used buffer

4.3 Measurements

In this section the measurements achieved with a
first prototype for the active networking infrastructure
AMnet running under Linux 2.4.18 / Pentium 111/800
are discussed. The SR_Net module (see section 4.2)
was utilized to intercept the socketcall system call. We
varied the number of stored security policies inside the
corresponding database and the position of the secu-
rity policy inside the database of the requesting pro-
cess was uniform distributed. The security policies
are stored in an ordered array and to find the proper
policy a binary search algorithm was realized.

In table 1 the overhead caused through the socket()
system call interception is depicted. The first col-
umn represents the amount of service security poli-
cies stored inside the database. The second and third
column represent the absolute and relative overhead

Table 1: Overhead due to the interception of system
calls

No. of security policies | absolute [s] | relative [%]
0 0.068 14.25
10 0.139 29.04
100 0.190 39.82
1000 0.244 50.97
10.000 0.345 72.21

Table 2: Time needed for the execution of 200 pings
to the loopback interface

No. of security policies | No SMR | SMR loaded
0 3m18.975s | 3m18.975s
10 - 3m18.975s
100 - 3m18.976s
100.000 - 3m19.064s

caused through the interception of a system call and
the corresponding look up in the database whether or
not the calling process has got the authorization.

The bigger the number of security policies the more
time is needed in average to find the proper policy. If
we look at the value for zero service security policies
inside the database, we get an additional CPU-time
needed to intercept and redirect one system call from
about 0.068 us.

The presented result focused on the CPU time. In
a next experiment we measured the complete time
needed to send and receive 200 ping packets to and
from the loopback interface, i.e. we also measured
the time during which the process is sleeping.

The figures in table 2 are the calculated mean values.
The corresponding standard deviation is smaller than
5 ms per given value. Thus, we can conclude that up
to 100 security polices stored, there is no remarkable
performance degradation noticeable, at least for the
described ping application. The security policy used
for the measurement consists of a process identifier
and a yes/no decision for network access.

5 Conclusion

We have presented an at runtime fine-grained config-
urable access control and resource monitoring mecha-

nism for programmable networks which is based on a
standard operating system. Further on, the presented
mechanism is easily extensible for future security and
resource requirements due to the modular design. The
interception of system calls gives us the possibility to
restrict the access to certain resources and to monitor
the resource utilization on a per process basis, inde-
pendent of the execution environment provided by the
active node for the execution of the process.
Concluding we can state that the presented results
show that the approach is very promising. A perfor-
mance degradation is measurable but has no remark-
able influence on the execution time of the service.

References

[1] K. Calvert (Editor). Architectural framework for
active networks. In DARPA AN Working Group
Draft, 1998.

[2] D. Evans. Flexible policy-directed code safety.
|EEE Security and Privacy, 1999.

[3] J. Gao and P. Steenkiste. An access control archi-
tecture for programmable routers. In Proceedings
of the IEEE OPENARCH, 2001.

[4] T. Harbaum, A. Speer, R. Wittmann, and M. Zit-
terbart. Providing Heterogeneous Multicast Ser-
vices with AMnet. Journal of Communications
and Networks, 3(1):46 — 55, March 2001.

[5] A. Hess. A dynamic and flexibel access control
mechanism for active networks. Technical report,
Technische Universitat Berlin, 2002.

[6] P. Menage. RCANE: A Resource Controlled
Framework for Active Network Services. In Pro-
ceedings of the First International Working Con-
ference on Active Networks (IWAN *99), volume
1653, pages 25-36. Springer-Verlag, 1999.

[7]1 S. Merugu, S. Bhattacharjee, E. Zegura, and
K. Calvert. Bowman: A node OS for active
networks. In INFOCOM (3), pages 1127-1136,
2000.

[8] R. Pandey and B. Hashii. Providing fine-grained
access control for mobile programs through bi-
nary editing. Technical report, University of Cal-
ifornia, 1998.

