
A Node Evaluation Mechanism for Service Setup in
AMnet

Thomas Fuhrmann
�

, Marcus Schöller, Christina Schmidt, and Martina Zitterbart

Institut für Telematik
Universität Karlsruhe, Germany

Abstract. AMnet is a programmable network that aims at the flexible and rapid
creation of services within an IP network. Examples for typical services include
network layer enhancements e.g. for multicast and mobility, transport layer en-
hancements e.g. to integrate wireless LANs, and various application layer ser-
vices e.g. for media transcoding and content distribution. AMnet is based on
regular Linux boxes that run an execution environment (EE), a resource moni-
tor, and a basic signaling-engine. These so-called active nodes run the services
and provide support for resource-management and module-relocation. Services
are created by service modules, small pieces of code, that are executed within the
EE. Based on the standard netfilter mechanism of Linux, service modules have
full access to the network traffic passing through the active node.
This paper describes the evaluation mechanism for service setup in AMnet. In
order to determine where a service module can be started, service modules are
accompanied by evaluation modules. This allows service module authors to im-
plement various customized strategies for node-selection and service setup. Ex-
amples that are supported by the AMnet evaluation mechanism are a) service
setup at a fixed position, e.g. as gateway, b) along a fixed path (with variable
position along that path), c) at variable positions inside the network with prefer-
ences for certain constellations, or d) at an unspecified position, e.g. for modi-
fication of multicasted traffic. The required path information is gathered by the
AMnodes present in the network. By interaction with the resource monitors of
the AMnodes and the service module repository of the respective administrative
domain, the AMnet evaluation also ensures overall system security and stability.

Keywords: Programmable Networks, Active Nodes, Evaluation

1 Introduction

AMnet, the Active Multicast Network [6], is a programmable network that aims at the
flexible and rapid creation of services within an IP network. Examples for services are
manifold, including (semi) reliable multicast, mobility support, media transcoding, and
many others. For a more detailed overview of AMnet services see [12]. Services are
created by service modules being executed on the active nodes of the AMnet system.
Both, the number of nodes required for a service and their location within the network
depend on the specific service (cf. figure 1):

�

Corresponding author; fuhrmann@tm.uka.de

Multicast G r o up A
Multicast G r o up B

a) b)

c)d)

Fig. 1. The four basic location categories: (a) fixed gateway (b) on-path (c) spread on a distribu-
tion tree (d) anywhere in the intersection of two multicast groups

a) Some services require a fixed location where a service module has to be executed.
E.g., a security service might be required to run on the gateway connecting the
secured region with the insecure rest of the network.

b) Other services need to run at an only vaguely characterized position within the
network. A media transcoding service, for example, should run somewhere on the
data-path between the sender and the receiver. For a down-scaling service (e.g.
PCM to MP3) this position should be close to the sender and vice versa for an
up-scaling service1.

c) For some other services the exact location (or locations respectively) where the
service modules are executed can be chosen rather freely. A multicast reflector ser-
vice, supporting multicast transmissions in a non-native multicast network, should
ideally run at all the bifurcation points of the distribution tree. But any active node
upstream from the bifurcation point may execute the service if one accepts a little
bandwidth waste between that node and the actual bifurcation point.

d) In a true native-IP-multicast environment the location where a service is executed
becomes even less important. A service that takes data from one multicast group,
modifies it, and provides it to members of another multicast group can in principle
operate anywhere as long as this position lies in the scope of both required multicast
groups.

Except for the first category which defines a hard limit, all listed location require-
ments only yield one among several other criteria for the selection of a node. These
other criteria comprise but are not limited to the following:

Memory — Can the node satisfy the service module’s memory requirements without
compromising the other services already running on that node?

Data rate — How many unused bandwidth is available on the node’s links?
CPU cycles — Is enough CPU capacity available to execute the service module? Given

that the same service might be able to run on a broad variety of different hardware

1 Such a service is required to support end-devices that are not able to decode a certain media
format.

platforms , it is challenging to compare this criterion across different nodes in the
network.

Special hardware components — Service modules can require special hardware com-
ponents. Presence of such components must either be treated as hard limit or - if
modules use such hardware only optionally - might be treated as soft criterion that
can be weighted against other criteria.

The AMnet evaluation mechanism provides a mechanism to select one2 out of all
the AMnodes that are available in the network. The selected node should satisfy all
the hard criteria and match the others as good as possible, where “as good as possi-
ble” is determined by the criteria that enter the evaluation process: required evaluation
time, algorithmic complexity of the evaluation, etc. In many cases, it is fair enough to
contend with a heuristic instead of lengthily searching for a global optimum in the pa-
rameter space. This holds even more if one considers that the parameters considered in
the evaluation process are perpetually changing, and might thus soon render each “op-
timal” decision sub-optimal. To reflect these constant changes in the parameter space
and additionally give room for a later improvement of a quick decision, AMnet provides
service modules with the possibility of relocating themselves to another, more suitable
AMnode. Relocation is described in detail in [7].

The rest of this paper describes the AMnet evaluation mechanism. Section 2 gives
an overview over relevant related work. Section 3 presents the basic architecture of the
AMnet evaluation mechanism. Section 4 describes the relevant aspects of our imple-
mentation, and presents measurements of this implementation in the FlexiNet testbed.
Section 5 concludes with an outlook on future work.

2 Related work

Following the seminal work on active networks [16] many efforts to flexibly create ser-
vices inside the network focused on the capsules approach. ANTS [16], SmartPackets
[13], and SwitchWare [1] directly inject code (so-called capsules) into the network, e.g.
as Java bytecode or in a special purpose language [11]. This in-band approach obtains
simplicity at the cost of neglecting system security. It does not require any additional
management or evaluation functionality. At the same time the system has almost no
control over the capsules’ use of network resources3.

With the active networking architecture [2] active packets invoke predefined func-
tions within the network. This approach elegantly combines the straight forward code
execution of the capsules approach with the additional security of programmable net-
works. The latter use out-of-band mechanisms to load code into the active network
nodes. Other hybrid approaches are e.g. DAN [4] and the original AMnet concept [9]
which used capsules only to evaluate an active node in order to determine where the
actual code should be started.

2 For readability we only consider the case where a single node executes the required service.
The case of multiple active nodes is equally easily handled by AMnet.

3 The only means of preventing capsules from consuming unlimited resources is a limited per-
capsule credit that is checked by the virtual machine executing the capsule.

The evaluation problem is common to all programmable approaches since they do
not have the full flexibility that capsules provide. Several possible solutions to this eval-
uation problem have been suggested in the literature. Darwin [8] uses a “service broker”
[3] to map a resource requirement graph into actual network resources. The 2K-system
[17] is based on so-called dealers that associate server, client, and active node. These
dealers are organized into hierarchic domains and employ heuristics to establish appro-
priate associations. Other approaches [5,15] are based on the mobile agents principle
[18] that determines and assigns resources in the network.

3 Architectural overview

As described in section 1, the AMnet evaluation mechanism has to select one node
among all the available AMnodes and then to start the requested service there. The
service request itself is either signaled automatically by an end-device or explicitly by
its user. An example for the former might be a video streaming application where the
video player detects severe packet loss and signals the need for a transcoding to a lower-
bandwidth format. An example for the latter might be a privacy service that provides
strong encryption for legacy applications that do not support encryption. There are also
usage scenarios conceivable where other AMnet services signal the need for a service,
e.g. a security service has detected a beginning attack and demands the installation of
an appropriate filter. Still, with respect to evaluation all these cases can be treated in the
same way.

3.1 Service request

A service request is signaled via a specific service request message. This message is
sent towards the sender of the data which the service should operate on. Typically, a
sender will be a multicast source, a (unicast) server, or a communicating peer. We can
distinguish three cases of knowledge about the sender:

Case 1: Known path The service requestor knows at least one AMnode that lies on
the data-path between the sender and itself. In AMnet, this is achieved by having
a sender issue session announcements into which the AMnodes inscribe their IP-
addresses [14]. Addresses should be enlisted cumulatively to collect a whole path
of AMnodes and leave the actual choice of a node to the evaluation process. This is
the easiest case since the service request can directly be sent to an AMnode where it
is then handled. It requires, however, an AMnet-aware sender that regularly issues
session announcements.

Case 2: Known origin If the latter is not given, we will in almost all cases still know
the valid IP-address of the sender. In that case, we can reverse the session announce-
ment mechanism described in [14] and send the service request towards the sender.
If at least one AMnode lies on the data-path from the requestor to the sender, the
request will be caught and the evaluation can be started. Otherwise, the sender will
tacitly discard the request that it cannot handle.
This approach has two disadvantages as compared to the previous one: firstly, if no

AMnode lies on the data-path from the requestor to the sender the evaluation pro-
cedure fails or has to employ more elaborate mechanisms like they are used for the
AMnet service relocation (see [7]). Secondly, with asymmetric paths this approach
might find AMnodes that lie on the upstream path towards the sender but not on
the downstream path from the sender to the receiver. Here, again, more elaborate
mechanisms are necessary to establish an AMnet service on an appropriate node.

Case 3: Known direction In the rare case where we do not have a proper sender-
address, we can still pick an arbitrary address which lies in the direction where
we want the service to be put up. With that address we can revert to the previous
case.
An example for this case is an attack with spoofed IP-addresses. Although these
addresses are invalid, they naturally lie in the direction the attack is coming from.

The service request message that is sent according to these three cases contains
a description of the requested service and identifies and authenticates4 the requestor.
Service descriptions vary in their level of strictness.

Service class level — The requested service is only abstractly specified, e.g., as transcod-
ing class of service. The desired operation is specified by a parameter list: e.g. band-
width limit, requested media formats (i.e. mime types), etc. The evaluation process
then chooses an appropriate service module that matches the request.

Service level — The request detailedly describes the service, i.e. which kind of oper-
ation should be performed on the data. A typical example is a fixed transcoding
request, e.g. PCM to MP3. Although the freedom of the evaluation process is more
limited than in the previous case, the concrete choice of the service module (vendor,
operating system, etc.) is still open.

Service module level — This is the most detailed case where all degrees of freedom
including the actual code version are fixed. This is required since an application
might rely on an unspecified feature (or even bug) of a module.

Currently, service class names, service names, and the services modules’ unique
identifiers are assigned administratively. At least for the latter an automated mechanism
will be provided to facilitate widespread deployment of AMnet.

3.2 Evaluation Modules

Upon reception of a service request, the receiving AMnode first checks whether the
requestor has sufficient rights to request that service. To this end, the node contacts
one of the domain’s service module repositories [14]. If the permission is granted the
node receives an evaluation module that is executed to further determine the evaluation
process. For services that do not require legitimation by the service requestor or for
which that legitimation has already been proven and not yet expired, the evaluation
module may be directly executed from the AMnode’s module cache.

The code of the evaluation module has access to the relevant resource information
of the local AMnode through the AMnet resource monitor [10] and to the AMnode path

4 Required cryptographic strength of authentication depends on the service that is requested.
Services may also be made generally available.

data that was signaled together with the service request. With the help of this data the
evaluation module can issue a peer request to the other AMnodes on the path of the data
that are to be modified. If such path information is not available, the evaluation module
has to employ more sophisticated methods that are described in [7].

Upon reception of a peer request, the respective AMnode acts as previously de-
scribed, i.e. it checks the legitimation of the requestor as a result of which the node
obtains the evaluation module. As opposed to the initial service request, an evaluation
module can also use the identity provided by the AMnode that has sent the peer request
as basis for legitimation. Thus, within an administrative domain legitimation need only
be checked once since peering AMnodes there trust one-another. This mechanism also
provides the basis for inter-domain evaluation. Here, peering domains would mutually
legitimate the use of certain evaluation modules.

The way the actual evaluation is done depends on the requirements of the service
for which the evaluation is performed. Since the evaluation modules are code that is
executed on the AMnodes, complete freedom can be given to the authors of an AMnet
service to implement whatever evaluation suits their service module. It may just check
for objective parameters as listed in section 1 or perform own benchmark tests in order
to determine the node’s capabilities. The outcome of these checks can reach from a plain
decision whether a node can execute the service module to a fine grained judgment on
how well a certain node is suited at that time for execution of the service. How these
results are combined into a decision on the setup of the service is again free choice of
the module’s authors. Accordingly, the order and number of nodes that are contacted
during evaluation also depends on the service that is to be established.

– If the service should be started as quickly as possible, the evaluation module first
checks whether the local node provides enough resources to execute the actual
service. The next node will only be contacted if this check fails. Otherwise the
service is immediately set up. Due to AMnet’s relocation mechanism an already
running service can be moved to a better suited node.

– If the service preferredly runs close to the sender, the first node in the node list
will be contacted and evaluated for immediate setup of the service. If that node’s
resources are not sufficient, the node list will be traversed reversely until a matching
node has been found.

– If no location requirements are given, evaluation is performed on several nodes,
either simultaneously or consecutively, depending on the evaluation module’s strat-
egy. The results of these evaluations can then be compared by the evaluation mod-
ules which then will setup the service on the node with the best result. This com-
parison can be done by the node initially receiving the service request, any other
outstanding node, or by a distributed algorithm.

If the nodes of the node list collected in the session announcement (see section 1)
is not capable of providing the service or if such a list does not exist, other mechanisms
can also be deployed. These mechanisms are extensively described in [7].

3.3 Service Setup and Start
When the evaluation module(s) have decided where the service should be set up, that
node is notified. It then pulls the code of the service module from the repository [14] and

Table 1. Practice Test Results

Step Process Average time [ms] Percentage
1 Decode Service Request 3.3 0.4
2 Download evaluation module information (node 1) 24.3 2.8
3 Transform to Evaluation Packet 59.7 6.8
4 Download evaluation module (node 1) 36.7 4.2
5 Install evaluation module 16.1 1.6
6 Download service module information (node 1) 16.8 1.8
7 Run evaluation module 39.7 4.5
8 Send evaluation packet to node 2 95.3 10.8
9 Download evaluation module (node 2) 52.3 5.9

10 Install evaluation module 20.3 2.3
11 Download service module information (node 2) 229.4 26.0
12 Run evaluation module 46.3 5.2
13 Create and send result packet to node 1 165.0 18.7
14 Start service module 88.2 10.0

Time until service start 881.1 100.0

starts the service. At the same time, the execution of the evaluation module terminates
although its code may be kept in a cache.

In principle, the evaluation module will have checked all necessary preconditions
for service setup and start. Thus almost all potential failures during setup should be
treated as if an already running service fails. The only case that is treated separately
are failures due to the fact that availability of node resources may change during the
evaluation process. In order to avoid complex resource allocation and release mecha-
nisms, AMnet does not reserve any resource during evaluation. If a required resource
has become unavailable on the best-rated node, the setup reverts to the second-best
node, etc. If this necessity to contend with seemingly sub-optimal nodes is not a rare
event, resource availability is changing so quickly that service relocation is inevitable
and evaluation becomes less crucial anyway.

4 Implementation and Measurements

The current implementation of an AMnet evaluation strategy is based on the known
path case presented in section 3.1. The evaluation is implemented in Java using dynamic
class loading and threads to integrate the functionality dynamically during runtime.

The measurements of the implementation took place in the AMnet-testbed using
two AMnodes. These two nodes are both PentiumIII 800MHz standard PCs running
Linux as their operating system. Both AMnodes accessed the same service module
repository. The receiver was connected to amnet1 via 100Mbit/s-Ethernet and amnet2
was connected via a 10Mbit/s WaveLAN link. Table 1 shows the results of the practice
test. The test runs resulted in an average delay of 881.1 ms from receiving a service
request from a client until the service gets started. The main delay is caused by the

wireless link of node 2. To download the service module information to node 1 took
16.8 ms or 1.8% whereas the download to node 2 took 229.4 ms or 26.0%. The same
applies to the communication between node 1 and node 2 in steps eight and 13. The
same test runs on an all-wired testbed have reduced the average delay until service
startup significantly. The evaluation of a single AMnode showed the average delay until
service startup to be 354,5 ms.

5 Conclusions and Outlook

In this paper we have presented AMnet’s evaluation mechanism. Its main purpose is
the selection of an AMnode on which a requested service will be set up. The key idea
is to use the fact that in a programmable network evaluation itself can be achieved by
modules that are loaded into the active nodes on demand. AMnet thus only provides
a framework in which the evaluation modules operate. Key features of this framework
are basic mechanisms for discovery of the topology of the relevant AMnodes, a generic
scheme to describe service requests and map their requirements onto evaluation mod-
ules, and mechanisms to identify and authenticate service requesters. The results of the
evaluation modules’ checks for available resources and eventually their benchmarks are
combined and the service is set up on the node that seems most suitable at that time.
In order to cope with changing conditions, the AMnet relocation mechanism can move
already running services to more suitable nodes.

Implementation and first test of this evaluation mechanisms show that the mecha-
nism is practical and performs well in a local setting. The focus for our future work on
AMnet lies on the provision of more services employing different evaluation strategies.
These evaluation approaches will then be also tested across administrative domains to
show that the mechanism scales to larger networks.

References

1. D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, et al. The SwitchWare Active
Network Architecture. In IEEE Network Special Issue on Active and Controllable Networks,
volume 12, pages 29–36, June 1998.

2. Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. An Architecture for Active
Networking. In INFOCOM ’97, April 1997.

3. P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste, E. Takahashi, and H. Zhang. Darwin:
Customizable Resource Management for Value-Added Network Services. IEEE Network,
15(1):22–35, 2001.

4. Dan Decasper and Bernhard Plattner. DAN: Distributed Code Caching for Active Networks.
In Infocom ’98, San Francisco, USA, June 1998.

5. Initial active network and active node architecture. Technical report, Future Active IP Net-
works (FAIN) Consortium, May 2001.

6. Thomas Fuhrmann, Till Harbaum, Marcus Schöller, and Martina Zitterbart. AMnet 2.0: An
Improved Architecture for Programmable Networks. To appear in: Proceedings of IWAN’02,
available from http://www.flexinet.de.

7. Thomas Fuhrmann, Marcus Schöller, Uwe Freese, and Martina Zitterbart. Service Reloca-
tion in AMnet. Available from http://www.flexinet.de.

8. Jun Gao, Peter Steenkiste, Eduardo Takahashi, and Allan Fisher. A Programmable Router
Architecture Supporting Control Plane Extensibility. IEEE Communications Magazine,
38(3):152–159, March 2000.

9. Till Harbaum, Anke Speer, Ralph Wittmann, and Martina Zitterbart. Providing Heteroge-
neous Multicast Services with AMnet. Journal of Communications and Networks, 3(1),
March 2001.

10. Andreas Hess, Marcus Schöller, Günther Schäfer, Adam Wolisz, and Martina Zitterbart.
A dynamic and flexible Access Control and Resource Monitoring Mechanism for Active
Nodes. In Proceedings of the 5th International Conference on Open Architectures and Net-
work Programming (OPENARCH) (Short Paper Session), 2002.

11. Michael W. Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles.
PLAN: A Packet Language for Active Networks. In International Conference on Functional
Programming, pages 86–93, 1998.

12. The FlexiNet Project. http://www.flexinet.de.
13. Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis Rockwell,

and Craig Partridge. Smart Packets: Applying Active Networks to Network Management.
ACM Transactions on Computer Systems, 18(1):67–88, 2000.

14. Anke Speer, Marcus Schöller, Thomas Fuhrmann, and Martina Zitterbart. Aspects of AMnet
Signalling. In Networking 2002, pages 1214 – 1220. Springer, March 2002.

15. A. Tan and A. Galis. Active IP Network Node Developments. Technical report, Department
of Electrical & Electronic Engineering, University College London, 2000.

16. David J. Wetherall, John V. Guttag, and David L. Tennenhouse. ANTS: A Toolkit for Build-
ing and Dynamically Deploying Network Protocols. In IEEE OPENARCH ’98, San Fran-
cisco, USA, April 1998.

17. Dongyan Xu, Klara Nahrstedt, and Duangdao Wichadakul. MeGaDiP: A Wide-Area Media
Gateway Discovery Protocol. In Proceedings of IEEE IPCCC 2000, February 2000.

18. Yechiam Yemini and Sushil da Silva. Towards programmable networks. In Workshop on
Distributed Systems: Operations and Management, L’Aquila, Italien, October 1996.

