Corridor Routing in Mobile Ad-hoc Networks

Christian Vogt, University of Karlsruhe
Michael Gerharz, University of Bonn
Christian de Waal, University of Bonn
Overview

- Advantages of Multi-Path Routing
- Existing Multi-Path Protocols
- Corridor Routing
- Simulation Results and Analysis
- Conclusion and Future Work
Advantages of Multi-Path Routing

- Bottleneck Circumvention
 Choosing paths with low traffic

- Efficient Bandwidth Usage
 Disperse traffic over multiple paths

- Reduced Destination Discovery Frequency
 Reducing signaling overhead
Existing Multi-Path Protocols

Ad-hoc On-demand Multi-Path Distance Vector Routing, AOMDV

Das, Marina:

Split Multi-Path Routing, SMR

Gerla, Lee:

- Disjoint paths
- Paths of different length
- Limit on number of routes
- Unicast Route Reply messages
Corridor Routing

Existing MP Protocols
- Disjoint paths
- Paths of different length
- Limit on number of routes
- Unicast Route Reply messages

Corridor Routing
- Paths may **overlap**
- Paths are **minimum-hop**
- Number of routes **unlimited**
- **Broadcast** Route Reply messages

Diagram
- Source
- Corridor
- Destination
Destination Discovery

Route Request message...
- is flooded into the network
- holds a Hops-to-Source field

Route Reply message...
- is regionally broadcasted along the corridor
- holds a Hops-to-Destination field
- holds a Total-Hops field
Intermediate router is on a minimum-hop path

\[\Leftrightarrow \text{Hops-to-Source} + \text{Hops-to-Destination} = \text{Total-Hops}\]
Simulation Results and Analysis

- Network Simulator 2
- 50 Mobile Nodes
 - 50 m Transmission Range
 - 300x60 m² Movement Area
 - ∅ 2 ~ 7 m/s Movement Speed
- DSR, AODV, and Corridor Routing Protocol (CRP) at L3
 - IEEE 802.11b at L2
- VoIP, 12.2 kbps (AMR Codec)
 - 60s Call Holding Time
 - 1 ~ 6 Parallel Calls
Datagram Delivery Ratio

[Graphs showing the delivery ratio of datagrams under different conditions: number of parallel communication sessions and station velocity, with lines indicating CRP, DSR, and AODV protocols.]
Routing Failure Ratio

![Graph showing routing failure ratio vs. station velocity]
Destination Discovery Frequency

- CRP
- DSR
- AODV

Parallel communication sessions [#] vs. Destination-discovery frequency [#/min]

Station velocity [m/s]

Parallel communication sessions: 2

Parallel communication sessions: 4

Station velocity [m/s] vs. Destination-discovery frequency [#/min]
More Analysis

- Datagram Delivery Ratio
- Routing Failure Ratio
- Destination Discovery Frequency
- Datagram Delivery Delay
- Buffer Overflow Ratio
Conclusion and Future Work

- **Corridor Routing**
 - Use of All Minimum-Hop Paths
 - Unlimited Number of Paths
 - Paths are Not Necessarily Disjoint

- **Performance**
 - Increased Packet Delivery Ratio
 - Reduced Destination Discovery Frequency
 - Adverse Impact of Routing Failures

- **Future Work**
 - Comparison to Multi-Path Protocols
Corridor Routing in Mobile Ad-hoc Networks

Christian Vogt, chvogt@tm.uka.de
Michael Gerharz, gerharz@cs.uni-bonn.de
Christian de Waal, dewaal@cs.uni-bonn.de
Corridor Routing in Mobile Ad-hoc Networks

Supplementary Presentation

Christian Vogt, chvogt@tm.uka.de
Michael Gerharz, gerharz@cs.uni-bonn.de
Christian de Waal, dewaal@cs.uni-bonn.de
Why are there so many?
Analysis: Loss of Reply Messages

- Reply messages are broadcasts
- Broadcasts are unprotected by acknowledgements
- Increased risk for collision
- Some discoveries terminate prematurely
Solution: Propagation Monitoring

- X broadcasts Reply
- X listens whether Y propagates
- If Y does not propagate, X re-transmits
Destination Discovery Frequency, revisited
per Call (60 seconds)