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Abstract. Several projects proposed to use active or programmable networks to
implement attack detection systems for detecting distributed denial of service at-
tacks or worm propagation. In order to distinguish legal traffic from the attack
traffic bypassing packets need to be inspected deeply which is resource consum-
ing. Such an inspection can be realized either with additional and expensive spe-
cial hardware or in software. But due to resource limitations inspection of all
bypassing packets in software is not feasible if the packet rate is high. There-
fore we propose to add packet selection mechanisms to the NodeOS reference
architecture for programmable networks. A packet selector reduces the rate of
packets which are inspected. In this paper we detail on various packet selectors
and evaluate their suitability for an attack detection system. The results of our
implementation show significant advantages by using packet sampling methods
compared to packet filtering.

1 Introduction

Distributed denial of service (DDoS) attacks are still a major threat to the Internet today.
This is a long known problem to network researchers [8,9] and has attracted public
attention since the attacks against Yahoo, CNN, eBay, and many more in the last years.
In a major threatening type of DDoS attack the attacker does not exploit a weakness
of the victims operating system or application but aims to overload resources like link
capacity or memory by flooding the system with more traffic than it can process. The
attack traffic is generated by several slave systems which the attacker has compromised
before. The attacker has only to coordinate all these slave systems to start the attack
nearly at the same time against a single victim. Since the slave systems are scattered
over the Internet the attack flows are hard to identify nearby a slave system, because
a single attack flow consumes a relative small portion of the overall bandwidth and is
therefore indistinguishable from a regular communication flow. On their way towards
the victim system the attack flows are aggregated. At this point the attack might be
detectable if traffic analysis can be applied. Due to the high bandwidth of backbone
links a deep packet inspection of all packets is infeasible even with today’s standard
router hardware.

Another threat to the Internet today are worms [16,12]. A worm is a piece of soft-
ware which automatically exploits security holes in operating systems or applications



to infiltrate a system. After a successful break-in the worm starts to propagate itself to
as many other systems as possible. One side effect of this propagation is the increasing
bandwidth consumption since more and more worm instances try to propagate them-
selves to other systems. In the extreme this can lead to a denial of service attack if
the traffic caused by worm propagation overloads the link capacity. Secondly, worms
can easily be used to create slave systems for a subsequent DDoS attack. Due to their
feature to spread themselves automatically to other systems a large number of slave sys-
tems can be aggregated in a relatively short period of time. Today’s countermeasures to
worms are signature based detection systems scanning for well-known worms. These
systems are typically located at the edge of the Internet preventing the worm propaga-
tion to a specific network. An earlier detection of such a worm propagation would be
possible if the detection system is located in the backbone network. But again a deep
packet inspection at backbone rate is needed which is impossible with standard router
hardware.

1.1 An attack detection system

One way to realize traffic analysis with deep packet inspection is to enhance the router
with special purpose hardware. Another way to implement traffic analysis functionality
with deep packet inspection is to use a programmable network like FlexiNet. Such a
system allows to create instances of an attack detection system dynamically within the
network and the detection system itself can be multi-level.

We designed such an attack detection system to detect DDoS or worm attacks by
monitoring the bypassing traffic and retrieving statistical data of predefined aggregates.
For each of these aggregates the system computes the average packet count and derives
a threshold based on the packet count average and deviation. In normal mode, meaning
that no particular attack is currently suspected, only this simple traffic analysis module
is running. An excess of the aggregate’s threshold indicates an ongoing attack within
this aggregate. In this case specialized modules are loaded to analyze the suspicious
traffic. These modules can apply various anomaly or signature based tests on the packet
stream to verify the attack hypothesis.

As mentioned before the traffic analysis module can not deeply inspect all packets
flowing through the system in a backbone network due to resource limitations. There-
fore we use a packet selection mechanism [17] to reduce the number of packets re-
quiring deep packet inspection. Based on the statistical data of such samples the same
procedures can be applied to find hints on an ongoing attack if the estimation error in
each sampling interval remains small. In this paper we will detail on packet selectors in
section 2, present an evaluation considering their suitability for an attack detection sys-
tem and compare the suitable packet selectors with regard to their estimation accuracy.

1.2 Extending the NodeOS specification

The FlexiNet platform was designed according to the NodeOS specification [1] that is,
the standard architecture for programmable networks. NodeOS specifies that packet fil-
ters for the incoming channel inChan must conform to the IPFIX flow definition [14].



This definition allows filtering of packets dependent on the packet’s content but it pro-
hibits the implementation of many packet selectors for the incoming channel. The only
way to implement a packet selector according to the NodeOS specification is to for-
ward all packets to the execution environment, apply the packet selector there and fur-
ther process only selected packets. This introduces a high overhead to the systems. This
overhead can be reduced if the NodeOS specification gets extended to allow applying
packet selectors for the incoming channel.

Therefore we propose to extend the NodeOS specification to allow packet filter-
ing according either to the IPFIX flow definition or to the PSAMP definition, packet
sampling according to the PSAMP definition and every combination of these two def-
initions. The goal of the IETF working group PSAMP is to propose various packet
selectors for the Internet especially with the background of traffic measurement.

In contrast to other approaches, that are described in section 1.3 and use pro-
grammable networks to build an attack detection system, we base our system on a
packet selector in the incoming channel. Besides building an attack detection system
the enhancement of the incoming channel enables the creation of services like trajec-
tory sampling, traffic accounting and measurement with reduced overhead.

In section 3 we present implementation details and an evaluation of the most promis-
ing selectors for the FlexiNet platform, which we use to detect DDoS attacks and worm
propagation in high-speed networks. The results show clearly that the usage of packet
selection in the incoming channels reduces significantly the overhead on the system.
Therefrom we conclude that an extension of the NodeOS architecture of programmable
networks to include the presented sampling method is useful and necessary.

1.3 Related Work

There are some existing approaches which design an attack detection system but they
are not using packet selection. In [15] deep packet inspection of all observed packets
in a backbone network is achieved by programmable network nodes built of host and
network processors. The network processors in these network nodes are able to process
packets at line rate so packet selection is not required but this is an expensive approach
due to extra special purpose hardware. The approach in [10] does not need deep packet
inspection but uses packets which are dropped on a router due to congestion to identify a
suspicious aggregate of packets having a certain property and rate limit this high band-
width aggregate. Furthermore, a pushback mechanism is proposed in which a router
can ask upstream routers to control an identified aggregate. This pushback mechanism
is achieved by programmable networking.

Packet selection is used in various areas to infer knowledge about an observed
packet stream without inspecting all packets. Two examples are the charging from sam-
pled network usage [4] that estimates the user’s network usage on the basis of a sampled
subset of packets, and the trajectory sampling for direct traffic observation [6] that uses
packet filtering to determine the path through a network of a subset of packets.

A performance study of some packet selectors is presented in [3]. The paper com-
pares packet-triggered with time-triggered methods and analyzes the differences be-
tween systematic and random selectors. Filtering schemes and probabilistic selectors
are not taken into account. The fact that the packet rate of an observed packet stream is



not constant over time is addressed in [2]. This paper proposes the usage of an adaptive
sampling probability to restrict the sampling error to a predefined tolerance level. This
paper does not try to find the optimal choice of a packet selector but addresses a useful
optimization in case an optimal packet selector has been chosen.

2 Packet selectors

The IETF PSAMP working group defined two types of packet selectors: filtering and
sampling [17], [5]. Filtering is used if only a particular subset of packets is of interest.
Filtering schemes are always deterministic and are based on packet content or router
state. In contrast to filtering, sampling is used to infer knowledge about an observed
packet stream without inspecting all packets. Therefore only a representative subset of
packets is selected which enables an estimation of properties of the unsampled traffic.
Sampling methods are either nondeterministic or do not depend on packet content or
router state. The sampling methods are further grouped into two categories: random
sampling and systematic sampling. First a very brief summary of the filtering schemes
and sampling methods is given. A rationale which of the presented methods are suitable
for an attack detection system is presented in section 2.3. This subset of methods is
examined in section 2.4 in regard to estimation accuracy.

2.1 Filtering schemes

Currently the following three filtering schemes are defined by the IETF PSAMP work-
ing group [17]:

– Field match filtering—This filtering scheme is based on the IPFIX flow definition.
If a specific field of an IP packet matches a predefined value the packet is selected.

– Hash based selection—The content of the IP packet or a portion of it is mapped
to a hash range using a hash function. A subset of this hash range is defined to be
the selection range. A packet is selected if the hash of the current packet is mapped
into this selection range.

– Router state filtering—A packet is selected if one or more specific states of the
router match predefined values. Example states of the router are: ingress interface
id, egress interface id, or no route for packet found.

2.2 Sampling methods

Within the sampling methods three indeterministic sampling methods are defined and
two methods which are deterministic but independent of packet content and router state.

– n-out-of-N sampling—For this method n different numbers must be randomly gen-
erated in the range of 1 to N . All packets with a packet position equal to one of the
n numbers are selected. This procedure has to be repeated for every interval of N
packets.

– Uniform probabilistic sampling—Each packet is selected with a fixed uniform
probability 1/p.



– Non-uniform probabilistic sampling—This method allows to weight sampling
probabilities. Different fixed probabilities can be assigned to different aggregates
in order to increase the probability of selecting rare packets.

– Systematic time based sampling—A sampling interval is defined consisting of a
selection interval and a non-selection interval. A start trigger defines the beginning
of a selection interval. All packets arriving after this trigger are selected until the
stop trigger fires. No packets are selected thereafter until the new sampling interval
starts. After this non-selection interval a new start trigger restarts the method. The
unit of the intervals is time based.

– Systematic count based sampling—Like systematic time based sampling a selection
interval and a non-selection interval are defined. The unit of the intervals is count
based. This means that n consecutive packets are selected and the next m packets
are not.

2.3 Determining suitable packet selectors for an attack detection system

It is obvious that the presented filtering schemes are not suitable for an attack detection
system. Any attacker who knows the filtering rules can adapt his attack in a way that
his attack packets are not selected by the system. This makes bypassing of the detection
system easy.

Non-uniform probabilistic sampling was not taken into account because it needs
a deep packet inspection since the selection probability depends on packet content.
The systematic time based sampling was not considered either because the estimation
accuracy varies on the number of packets during a sampling interval. Additionally the
estimation accuracy drops dramatically if the number of packets during the selection
interval falls below a threshold and no guarantees about the estimation accuracy can be
made.

To implement the n-out-of-N sampling method a list of n unique random numbers
must be generated. Therefore, a random number generator must be implemented, mem-
ory to save these n numbers must be allocated, and an algorithm to detect duplicate
random numbers is needed as well as a sorting algorithm. In contrast, uniform prob-
abilistic sampling requires only a random number generator and memory to save the
selection probability. Last, systematic count based sampling requires least resources
of all methods. These are memory for the start trigger, the stop trigger, and the packet
counter. A problem of uniform probabilistic sampling can be the different number of se-
lected packets in consecutive intervals. This problem vanishes if enough packets during
the selection interval are selected. A problem of the systematic count based sampling
method is its deterministic approach. If the sampled traffic contains an inherent periodic
pattern a detection might fail if the pattern always falls into the non-selection interval.

In summary, we selected the following three sampling methods as interesting candi-
dates for suitable packet selectors and investigated their estimation accuracy: n-out-of-N
sampling, uniform probabilistic sampling and systematic count based sampling.

2.4 Estimation accuracy

We compared the suitable packet selectors described in section 2.3 with regard to es-
timation accuracy. The examination was carried out with an empirically determined



sampling probability of 30% which produced acceptable deviations with the used net-
work traces and interval lengths. One packet selector was additionally investigated with
sampling probabilities of 20% and 40% to collect some comparative values. The exam-
ination used the following different configurations and parameter sets:

i. 30-out-of-100 sampling
ii. 300-out-of-1000 sampling

iii. Uniform probabilistic sampling with a sampling probability of 20%
iv. Uniform probabilistic sampling with a sampling probability of 30%
v. Uniform probabilistic sampling with a sampling probability of 40%

vi. Systematic count based sampling with a selection interval of 3 packets and a non-
selection interval of 7 packets

vii. Systematic count based sampling with a selection interval of 30 packets and a non-
selection interval of 70 packets

We applied some network traces which originated from the NLANR passive mea-
surement and analysis project [11] to these packet selectors. Therefore, the observed
packet stream was divided into intervals with a fixed length and the observed number
of packets per interval was examined. The suitable packet selectors were used to infer
knowledge about different aggregates like TCP packets, UDP packets etc. without in-
specting all packets. The used network traces had a packet rate of about 20 000 packets
per second and a duration of about 90 seconds. To make the examined packet selectors
comparable the average X of the number of packets per interval of one network trace
over all observed intervals was calculated for every aggregate. Afterwards the deviation
between the original trace, that is when considering all packets, and the sampling run
was computed.

deviation =

√√√√ 1
n − 1

n∑
i=1

(Yi − Xi)2 (1)

Yi represents the estimated number of packets in interval i of the sampling run, X i

counts the number of packets in interval i of the original trace and n counts the number
of observed intervals. To get unbiased results 10 sampling runs were carried out per
examined packet selector and the average of these 10 runs was calculated. At the end
the resulting value was correlated with the calculated average X of the original trace

deviationrel =
1
X

(
1
10

10∑
i=1

deviationi) (2)

to derive a relative deviation. These relative deviations were used in the following ex-
amination to compare the different suitable packet selectors.

Table 1 lists the relative deviations of all examined packet selectors for chosen ag-
gregates and interval lengths. In the first examination an interval length of 5 seconds
which corresponds to about 100 000 packets per interval was used. In this scenario we
were able to show that with a sampling probability of 30% low bandwidth aggregates
like the ICMP aggregate (ICMP 2), which are the worst case in sampling scenarios, only



Table 1. Relative deviations of all examined packet selectors from original traces for chosen
aggregates and interval lengths
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Interval length: 0.5 seconds
ICMP 1 87.9 16.25% 16.8% 21.81% 16.47% 13.5% 16.85% 16.11%
UDP 1 1041.95 4.7% 4.47% 6.15% 4.77% 3.8% 4.6% 4.47%
TCP 1 9 343.11 1.03% 0.61% 2.11% 1.54% 1.27% 0.51% 0.7%

Interval length: 5 seconds
ICMP 2 890.82 5.29% 5.11% 6.84% 5.04% 4.39% 4.09% 4.0%
UDP 2 10 451.29 1.68% 1.53% 2.15% 1.52% 1.27% 1.58% 1.62%
TCP 2 93 423.88 0.9% 0.2% 0.69% 0.49% 0.42% 0.19% 0.21%

have a relative deviation of about 5% from the original trace’s values. High bandwidth
aggregates like TCP packets (TCP 2) have an even lower relative deviation of under 1%
which is an excellent estimation accuracy. In case of a lower interval length of 0.5 sec-
onds, which corresponds to about 10 000 packets per interval, the relative deviation of
low bandwidth aggregates degrades to a value of about 16% (ICMP 1) which we found
to be acceptable. In this case the relative deviation of the TCP aggregate is about 1%
(TCP 1). Using a packet selector with a sampling probability of just 20% (column iii.)
the relative deviation degrades in case of the ICMP aggregate to a value over 21% which
we did not find acceptable for our attack detection system. With an interval length of 5
seconds the relative deviation of this packet selector would be acceptable, too.

The values in table 1 and the previous results showed that the estimation accuracy
can be improved by enlarging the interval length if the packet rate remains constant.
But with an attack detection system in mind this surely is not a feasible solution since
such a system has to choose the interval length according to detection needs instead of
sampling accuracy needs.

In our examination we could also show that a packet selector with 40% sampling
probability (column v.) which has in all aggregates a lower relative deviation than the
same selector with a sampling probability of 30% (column iv.) does not improve the
estimation accuracy significantly. From these results we could conclude that a higher
sampling probability does not justify the higher overhead which arises through the fact
that more packets have to be inspected by the attack detection system.

Table 1 also shows that for high bandwidth aggregates 300-out-of-1000 (column ii.)
sampling performs slightly better than 30-out-of-100 sampling (column i.) and uniform
sampling with the same sampling probability (column iv.). Systematic Count Based
Sampling has a similar estimation accuracy than 300-out-of-1000 sampling.



Because all suitable packet selectors have similar estimation accuracies we made
our decision on the most suitable packet selector for an attack detection system de-
pending on the required resources like memory or processor time consumption of the
different sampling methods. These decision criteria resulted in the usage of systematic
count based sampling for packet selection in an attack detection system since this selec-
tor needs less resources than n-out-of-N sampling and uniform probabilistic sampling
as we already analyzed in section 2.3. Because for systematic count based sampling
large selection intervals increase the probability of biased results we always choose the
least possible selection interval. In case of a sampling probability of 30% this results in
a selection interval of 3 packets and a non-selection interval of 7 packets.

3 Implementation and Evaluation

To implement an attack detection system we used the programmable networking plat-
form FlexiNet [7]. This platform is designed according to the NodeOS specification
(see fig. 1a). A service module can install iptables filter [13] rules according to the IP-
FIX flow definition which select all matching packets in the incoming channel inChan
and forward them to the FlexiNet execution environment through a netfilter callback
function. Having these requirements we implemented in a first approach a NodeOS
conforming FlexiNet service module which used systematic count based sampling with
a selection interval of 3 packets and a non-selection interval of 7 packets to select pack-
ets from an observed packet stream. Then the attack detection system processed the
selected packets and at the end of processing every packet was reinjected into nor-
mal packet processing through netfilter. The problem with this approach according to
the NodeOS specification is that despite of a packet selector all packets of the observed
packet stream have to pass through the FlexiNet execution environment since filter rules
based on the IPFIX flow definition do not enable packet selection within iptables.

Execution Environment

NodeOS

Packet processing

outChaninChan

packet
filter

(a) Packet filter for inChan

Execution Environment

NodeOS

Packet processing

outChaninChan

packet
filter

packet
sampling

(b) Packet filter and packet selec-
tor for inChan

Fig. 1. Proposed extension to the NodeOS reference architecture



A second approach (see fig. 1b) takes the aforementioned problem into account and
changes the standard architecture for programmable networks in such a way that packet
selection is already possible in the incoming channel inChan, that is, before the pack-
ets are forwarded to the FlexiNet execution environment. Therefore, the iptables target
implementing systematic count based sampling was enabled to apply packet selection
instead of forwarding all packets to the FlexiNet execution environment. A copy of
every selected packet is queued for later processing while the packet is forwarded nor-
mally preserving the overall packet ordering. Packets which are not selected no longer
have to pass through the FlexiNet execution environment which results in a significant
performance improvement.

3.1 Evaluation

With the implementation of the two packet selection approaches described in the former
section we measured the time that was required to process a single packet of the ob-
served packet stream. The processing time starts with the check if the observed packet
matches the iptables filter rules of the service module and ends with the drop of the
copy forwarded to the execution environment. If the packet was not forwarded to the
FlexiNet execution environment the processing time ends after the iptables check. The
processing time was measured in processor tics by reading out a CPU register through
an available C-function. The evaluation was executed on a 2.4 GHz machine so 1 000
processor tics are up to about 0.42 µs and 1 ms is up to about 240 000 processor tics,
respectively.
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Fig. 2. Comparison between processing time of an attack detection system with sampling accord-
ing to the standard architecture (a) and to an extended architecture (b).

Figure 2(a) shows the processing time needed in case of systematic count based
sampling as part of a FlexiNet service module according to the NodeOS reference archi-
tecture. In this case packets which are not selected by the sampling method nevertheless
have to pass through the FlexiNet execution environment. Figure 2(b) shows the pro-
cessing time needed in the second approach which implements systematic count based

gamer
Note
Auswertung zeigt, dass durch Sampling einiges an Prozessorzeit eingespart werden kann (Verweis auf dieses Paper)... außerdem wird die durchschnittliche Verzögerung aller Pakete minimiert, da nur ein Teil der Pakete "angefasst" wird.



sampling as part of the inChan processing. Because of this change of the standard ar-
chitecture only packets which are selected by the packet selector have to be forwarded
to the FlexiNet execution environment. Packets which are not selected by the packet
selector can immediately be reinjected into the normal IP packet processing. This be-
havior results in a significant lower processing time for packets which are not selected
by the packet selector in comparison to the processing times in the first approach. This
causes the visible gaps between the selection periods in figure 2(b). Selected packets
still need a processing time similar to that of the first approach.

The comparison between the minimal processing times of packets which are not
selected in the standard architecture of about 250 000 processor tics and in the extended
architecture of about 750 processor tics clearly shows that packet selection is a feasible
possibility to apply an attack detection system also in backbone networks. This holds
since the estimation accuracy of sampling methods is good enough and an extended
architecture can save significant processing time for packets which are not selected.

The so far used sampling probability of 30% is still quite large for backbone net-
works but was chosen due to the pretty low packet rate and duration of the analyzed
network trace. In case of the much higher packet rates in backbone networks it is ob-
vious that the sampling probability can be decreased without getting worse estimation
accuracy if the interval length remains constant. If we observe for example a packet
stream with a packet rate of 500 000 packets per second and use an interval length of
0.5 second we could get approximately the same deviations with a sampling probability
of 0.6% than in section 2.4 with a sampling probability of 30% and an interval length
of 0.5 seconds.

4 Summary

In this paper we presented various packet selection methods proposed by the IETF
PSAMP working group and reasoned which of these are suitable to build an attack de-
tection system in high speed networks. Three sampling methods were considered as
suitable and were compared with respect to their estimation accuracy. Since the estima-
tion accuracy of all three methods was similar we preferred the sampling method with
fewest resource requirements like CPU and memory.

Further we argued that the current NodeOS specification lacks the possibility to
implement packet selection in the incoming channel domain. This introduces unneces-
sary overhead to the system. In our opinion the NodeOS specification should thus be
extended to include sampling methods in the incoming channel domain. This exten-
sion allows to build active and programmable networks for attack detection systems as
well as for traffic measurement or other applications of packet selection. We further
described such an extended programmable network and showed implementation results
proving the advantages of our proposal.
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