Corridor Routing in Mobile Ad-hoc Networks

Christian Vogt, University of Karlsruhe

Michael Gerharz, University of Bonn

Christian de Waal, University of Bonn

Overview

- Advantages of Multi-Path Routing
- Existing Multi-Path Protocols
- Corridor Routing
- Simulation Results and Analysis
- Conclusion and Future Work

Advantages of Multi-Path Routing

- Bottleneck Circumvention
 Choosing paths with low traffic
- Efficient Bandwidth Usage
 Disperse traffic over multiple paths
- Reduced Destination Discovery Frequency Reducing signaling overhead

Existing Multi-Path Protocols

<u>Ad-hoc On-demand Multi-Path</u> <u>Distance Vector Routing</u>, AOMDV

Das, Marina:

"On-Demand Multipath Distance

Vector Routing in Ad-hoc

Networks," IEEE ICNP, Nov. 2001.

Split Multi-Path Routing, SMR

Gerla, Lee:

"Split Multipath Routing with

Maximally Disjoint Paths in Ad-

hoc Networks," IEEE ICM, June 2001.

Disjoint paths

- Paths of different length
- Limit on number of routes
- Unicast Route Reply

messages

Corridor Routing

Destination Discovery

Route Request message...

- is flooded into the network
- holds a Hops-to-Source field

Route Reply message...

is regionally broadcasted

along the corridor

- holds a Hops-to-Destination field
- holds a Total-Hops field

Destination Discovery (2)

Intermediate router is on a minimum-hop path

⇔ Hops-to-Source + Hops-to-Destination = Total-Hops

Simulation Results and Analysis

- Network Simulator 2
- 50 Mobile Nodes
 50 m Transmission Range
 300x60 m² Movement Area
 Ø 2 ~ 7 ^m/_s Movement Speed

- DSR, AODV, and
 Corridor Routing Protocol (CRP) at L3
 IEEE 802.11b at L2
- VoIP, 12.2 kbps (AMR Codec)
 60s Call Holding Time
 - 1 ~ 6 Parallel Calls

Datagram Delivery Ratio

Routing Failure Ratio

Med-Hoc-Net 2004, Bodrum, Turkey, #10

Destination Discovery Frequency

More Analysis

- Datagram Delivery Ratio
- Routing Failure Ratio
- Destination Discovery Frequency
- Datagram Delivery Delay
- Buffer Overflow Ratio

Conclusion and Future Work

Corridor Routing
 Use of All Minimum-Hop Paths
 Unlimited Number of Paths
 Paths are Not Necessarily Disjoint

Performance

Increased Packet Delivery Ratio

Reduced Destination Discovery Frequency

Adverse Impact of Routing Failures

Future Work

Comparison to Multi-Path Protocols

Corridor Routing in Mobile Ad-hoc Networks

<u>Christian Vogt</u>, chvogt@tm.uka.de

Michael Gerharz, gerharz@cs.uni-bonn.de

Christian de Waal, dewaal@cs.uni-bonn.de

Corridor Routing in Mobile Ad-hoc Networks

Supplementary Presentation

Christian Vogt, chvogt@tm.uka.de

Michael Gerharz, gerharz@cs.uni-bonn.de

Christian de Waal, dewaal@cs.uni-bonn.de

Destination Discovery Frequency

per Call (60 seconds)

Analysis: Loss of Reply Messages

- Reply messages are broadcasts
- Broadcasts are unprotected by acknowledgements
- Increased risk for collision
- Some discoveries terminate prematurely

Solution: Propagation Monitoring

- X broadcasts Reply
- X listens whether Y propagates
- If Y does not propagate, X re-transmits

Destination Discovery Frequency, revisited

per Call (60 seconds)

