MIPv6 Binding Lifetime Extension

MOBOPTS RG IRTF/IETF-60

Jari Arkko (jari.arkko@nomadiclab.com) Christian Vogt (chvogt@tm.uka.de)

1

Outline of the Presentation

- Reasons for optimization
- RFC 3775 approach to lifetimes
- Our proposed alternative approach Simple - no config, no fancy crypto, one new option Based on exponentially earned lifetime credit

• Analysis

Up to 70-fold decrese in amount of signaling

Reasons for Optimizations

3

Reasons for Optimization

- RFC 3775 RR efficiency:
 - Generally requires 6 messages (376 bytes)
 - These are per movement and per peer
 - And two round-trips
- Not a problem for current normal usage
 - Not issue upon movements because the rest of stack uses even more messages
- However, it can still be an issue when
 - Nodes don't move that often
 - The rest of the stack becomes faster

Nodes that do not move often

- Movement frequencies
 - Movement is inherently infrequent on many link layers (GSM, UMTS, CDMA)
 - While frequent movements can happen on some link layers (WLAN), it is unlikely to be the most common case
- RFC 3775 RR causes 7.16 bits/s, if a node wishes to keep its RO state up
- This is not that significant, but waking up every few minutes may be

5

6

Why Have the Max Limit?

- It limits so called *time shifting* attacks
- If there was no limit, I could visit your network *today* and launch an amplified DoS attack on it *next month*
- With current RR, you have to have very recent *physical presence* to do it

Our Proposed Alternative Approach

The Basic Idea

- RFC 3775 rationale for limiting lifetimes is valid but there are other ways to do it besides the fixed limit
- We apply a "lifetime credit" based limit
- A node that just appeared for the first time gets a very short lifetime
- A node that has been on the same place for a long time will get a longer lifetime

- Ist RR run - Novement

► time

16

► time

Protocol Details

- The Lifetime Credit Authorization mobility option (inside a BU) carries the request for using this type of lifetimes
- Includes an authenticator which shows knowledge of all past Kbm values at this location

- Kcredit = hash(KbmN | hash(KbmN-1 | ...))

• Movement resets the lifetime back to its initial value

Analysis

Security

- We argue that this lifetime assignment -- even if different from RR -- is at least as fair and secure as in RR
 - First binding(s) after a movement have smaller lifetime than in RR -- less exposure to time shifting attacks
 - Subsequent bindings can have a large (up to 8 hrs) lifetime
 - But the involved nodes must have "invested" physical presence on the link to achieve this for much longer time (at least 24 hrs)

Efficiency

- For seldomly moving mobile nodes, there is less signaling
- 70-fold improvement in the steady state (from 7 bits/s to 0.1 bits/s)
- Nodes that expect to stay in one place at most 7 minutes should use the RFC 3775 method

Questions?