
Flexible Strategy Configuration for efficient
operation of a Next Generation Network

Uwe Walter
and Martina Zitterbart
Institute of Telematics

University of Karlsruhe (TH), Germany
Email: {walter, zit}@tm.uka.de

Joachim Charzinski
Siemens AG

Munich, Germany
Email: joachim.charzinski@siemens.com

Abstract— In times of network convergence and increasingly
challenging customer demands, automated tools can help operat-
ing Next Generation Networks more efficiently. Since operators
have different ideas and requirements about the strategies they
use for network operation and maintenance, automated solutions
need to be very flexible. This paper will present a concept that
allows for an easy and flexible configuration of the operational
strategy carried out by a traffic and performance management
node.

I. INTRODUCTION

One of the currently most important trends in the telecom-
munication industry leads towards combining traffic of differ-
ent service types onto a converged IP-based network. Given
the increasing importance of a stable and high-performance
network connectivity for customers, future networks must be
able to meet very demanding requirements.

The joint research project KING1 (Key components for the
Internet of the Next Generation) aimed at the development
of such a Next Generation Network (NGN) that features
support for Quality of Service in combination with carrier-
grade resilience [1], [2].

To enable a network provider to operate a KING network
efficiently, a Network Control Server (NCS) has been devel-
oped. Its task is to monitor the network’s operating conditions
and adapt its parameters if necessary, e.g. after changing
traffic patterns or topology changes like link failures or re-
connections.

To influence the network’s behavior, the NCS is equipped
with algorithms that control the internal routing and Network
Admission Control (NAC). The former is done by adjusting
the link metrics and configuring the routers accordingly. Ad-
mission of high priority traffic is regulated by an admission
control at the network border routers. Each NAC instance is
able to administrate a given local traffic budget on its own
to reduce signaling overhead and increase resilience. These
traffic budgets are upper bounds on the maximum amount
of admissible traffic at each NAC instance (and per service

1Parts of this work were funded by the German Ministry of Education and
Research (BMBF) under contract 01AK045. The authors alone are responsible
for the content of this paper.

class), calculated and optimized to the current capacity and
load situation by the Network Control Server.

This architecture allows to combine the advantages of a
central management node and distributed functions. While the
NCS is able to optimize network parameters to the current
situation more efficiently than each network component on its
own, care is taken not to make network availability depend on
a working NCS. All real-time tasks, i.e., packet forwarding,
QoS signalling and failure reaction, are handled autonomously
by distributed network components (routers, NAC boxes).
Thus, a temporary failure of the Network Control Server has
no impact on the basic network operation. For maintaining
QoS after link failures and re-routing, admission control
budgets are used that admit only traffic that can still be carried
after a failure.

In addition to keeping the network in a well-balanced
operating condition, the NCS can relieve operators of rou-
tine maintenance tasks and aid in the more complex tasks,
e.g. in traffic engineering for changing traffic matrices or in
evaluating network upgrade options.

II. STEERING PROCESS OF THE NCS

Before deploying a Network Control Server, which is able
to automatically control certain aspects of the network be-
havior by changing operational parameters (e.g. adjusting link
weights to influence the internal routing), it is necessary to
define a strategy that determines how to evaluate network
conditions and how to react to changing conditions in order
to achieve a controlled result.

Within the KING project, an NCS prototype was built
with a steering process that follows the strict policy to only
change network parameters if really necessary and useful.
Furthermore, if a reaction is necessary, the possible influence
on network operation is sought to be kept to a minimum. To
help in a better understanding of the strategy examples given
in the remainder of this paper, the basic reaction process of
the NCS is shortly outlined in the following.

A. Basic reaction process

Since a network provider seeks to maximize the income
generated by its network infrastructure, one of the most
important tasks of Traffic and Performance Management is to



enable the network to transport the biggest possible amount
of high priority traffic. Therefore, the probability of a request
for high priority traffic getting blocked is one of the most
important triggers for a necessary reaction, since such occu-
rances directly correlate to lost income. The NCS continuously
monitors the current blocking rates and budget utilizations
by gathering statistical data from all NAC boxes to estimate
the currently offered traffic matrix. Using this traffic matrix
and the currently active NAC traffic budgets, the (non-linear)
multi-rate Erlang blocking function transforms the estimated
offered traffic rates into blocking estimates. This approach
allows a good warning indicator for likely blocking, even
before it actually occurs, whereas simply relying on measured
blocking events would only allow a reaction after a significant
number of requests were blocked.

Having computed the estimated blocking rate, the NCS
compares this to configured thresholds. These represent the
provider’s notion of an acceptable blocking rate, which does
not yet justify an intervention. If the blocking rate is above
an acceptable level, the NCS uses its Budget Assignment
algorithm to re-optimize the NAC budgets to the current traffic
matrix [3], [4]. Having sent out the new budgets to the NAC
instances, the blocking rate is evaluated again.

There is a good chance that re-optimization of traffic bud-
gets alone is sufficiently successful in reducing the blocking
rate. While offered traffic at one network border router might
have increased, it might have diminished at another one. Since
the Budget Assignment algorithm takes the network topology
into account, it is often able to shift unused traffic budgets
from one NAC instance to another, reducing the likelihood
of blocked QoS requests at the higher loaded network entry
point.

The KING Admission Control does not preempt data flows
once they have been successfully admitted to the network.
Thus, when reducing a budget below the currently booked
level, all new requests will be blocked until enough flows
terminate on their own, freeing enough new traffic budget.
Together with the built-in resilience, this mechanism prevents
budget changes from affecting admitted traffic.

On the other hand, the more powerful tool of changing
the network’s internal routing might result in a period of
routing instabilities with increased packet loss rate during the
convergence phase. This is why the NCS does only trigger
its Metric Optimization algorithm [5] if blocking remains too
high even after a re-optimization of NAC budgets. To conclude
the efforts of saving the network unnecessary configuration
changes, the NCS is able to evaluate the gain of a new set
of link metrics in advance and can decide to discard them if
there would be only marginal benefit from their configuration.

B. Failure reaction

Whereas the basic reaction process runs periodically to
adapt the network to possibly slow-going changes of the traffic
matrix, there are other triggers such as link failures where a
faster reaction is advisable. The NCS monitors the message

exchange of the internal routing protocol to get notified about
topology changes.

As described in section I, due to resilience aspects, the
Network Control Server must not be mandatory for the real-
time failure reaction. This is why the optimization algorithms
running on the NCS are prepared to take certain failure
scenarios into account (e.g. each possible single link failure),
allowing to calculate traffic budgets and link metrics that
are already suitable for possible failures in advance. Routers
continue to handle failures locally by immediately re-routing
traffic according to their link metrics and topology informa-
tion. On the other hand, a reaction of the NCS, e.g. by reducing
traffic budgets, is not immediately due but can be delayed a
little bit to benefit from the fact that most failing links are
reconnected after only a few minutes [6], [7].

The failure reaction of the NCS incorporates a Holdoff -
Timer: If the failure has already been anticipated during the
calculation of the current traffic budgets, a reaction is delayed
until the configured Hold-Timer expires. If this happens, the
new topology is used as basis for a new optimization of
network parameters (and prepare the network for possible
next failures). However, if the failure gets repaired before the
Hold-Timer expires, an unnecessary reaction was successfully
avoided.

III. FLEXIBLE STRATEGY CONFIGURATION

While the basic strategy outlined in section II already
allows to configure certain thresholds, timers and scenarios,
like the acceptable blocking rate, the Holdoff-Timer and the
anticipated failure scenarios, network operators might want to
adapt the process to their needs in a more flexible way. One can
expect a great variety of demands towards the configuration
of an NCS strategy. While some network providers might be
content with pre-defined basic strategy examples and only
need minor tweaking to their policy, others might prefer
to completely change the logic behind the default steering
process and build their own complex reaction strategies.

To allow each operator to easily define their desired notion
of the appropriate reaction strategy, the Network Control
Server has been divided into functional building blocks, e.g.
the different triggers, optimization algorithms and config-
uration tools. Network parameters and statistical data are
represented by different data types, e.g. the current traffic
matrix, link metrics, thresholds, etc.

An operator can use either a textual pseudo-code mode or
a graphical representation, to combine these building blocks
and elements into the desired reaction strategy.

A. Pseudo-Code Example

Operators with programming experience might prefer to
define their reaction strategy in a simple pseudo-code repre-
sentation, very similar to e.g. the Java programming language.

An example of such a pseudo-code representation is given
in figure 1. This example2 is implementing the strategy de-

2While space constraints do not allow the explanation and purpose of each
data type and function, the example code should be intuitively understandable.



doPeriodically(120){
// compute new ("active") offered traffic matrix
tTM newActTM = fCompActiveTM(gGraph,
fGetNACData(tNow-130s,tNow-10s),plannedTM);

tBlockingData blockingTest = fCompBlocking(newActTM,
gBudgets);

if (fCompSelectMax(blockingTest) <= blockingLimits) {
return;

} else {
tBudgets newBudgets = fCompBudgets(gGraph, newActTM,
gMetrics, gFailScen);

fActConfigureBudgets(newBudgets);
gBudgets = newBudgets;
tBlockingData blockingTest = fCompBlocking(newActTM,
gBudgets);

if (fCompSelectMax(blockingTest) <= blockingLimits) {
return;

} else {
tMetrics testMetrics = fCompMetrics(gGraph,

newActTM, gFailScen);
tBudgets testBudgets = fCompBudgets(gGraph,

newActTM, gMetrics, gFailScen);
tBlockingData blockTestM = fCompBlocking(newActTM,

gBudgets);
if (fCompSelectMax(blockTestM) > blockingLimits) {

if (fCompSelectMax(blockTestM) >
cSignificanceFactor * blockingTest) {

fMethAlarm("no significant improvement");
return;

} else {
fMethInformOperator("metrics significantly

improved blocking but failed to reach target");
}

}
gMetrics = testMetrics;
gBudgets = testBudgets;
fActConfigureMetrics(gMetrics);
fActConfigureBudgets(gBudgets);

}
}

}

Fig. 1. Excerpt of a pseudo-code strategy configuration example

scribed in subsection II-A, where the current blocking rate is
periodically calculated and compared to a given threshold. If
the blocking rate is too high, a budget reassignment is tried
first, before new link metrics are calculated. If all options fail
to reduce the blocking rate, warnings are sent to the operator,
who might want to plan a network upgrade to react to the
increasing amount of offered high priority traffic.

While the code example does show a periodic task, the
reaction strategy is not limited to a sequential process. Triggers
are modelled similar to interrupts or exceptions in common
programming languages. For example, the expiration of a timer
or a signalled change in the network topology (e.g. due to a
link failure) could also be assigned with appropriate reaction
code. A prioritization system with higher execution priority for
urgent reactions would be used to avoid multitasking conflicts.

B. Graphical Strategy Definition Example

While many operators might be comfortable with a pseudo-
code like strategy description, some might prefer a more visual
configuration. The latter could take advantage of a graphical
representation of the strategy definition.

Figure 2 depicts such an example, implementing the same
strategy as the former pseudo-code example. A graphical
user interface (GUI) would help an operator to intuitively
build such a strategy definition out of the available functional

building blocks by interconnecting them (e.g. via drag-and-
drop actions).

To reduce the complexity of the representation, it would be
possible to define own macro blocks, resulting in a module
hierarchy. If some of the usually sequential tasks of figure 2
are combined into reasonable macro blocks, this would result
in the less cluttered version shown in figure 3.

N

fGetNACData

fCompActiveTM
NACData

graph

plannedTM

gGraph

plannedTM

a�b?
a blockingLimits

b
Y

ret.

calcAndSetNewBudgets

TM
graph

Metrics

gGraph

fCompBlocking
budgets

TM
gBudgets

failScen
gMetrics
gFailScen

a�b?
a

blocking-
Limits

b
Y

ret.

fCompBlocking
budgets

TM
gBudgets

N

1

gBudgets

ret.

escalateReaction

TM
graph gGraph

failScen gFailScen

gBudgets

blockingLimitsblockingLimits
lastBlocking

gMetrics

Fig. 3. Example from figure 2 with some defined macro blocks

C. Further Benefits

A more flexible way of configuring a system usually in-
creases the possibility for misconfigurations. Therefore, appro-
priate mechanisms should be built into the tools responsible
for the pseudo-code or GUI like definition. These should
help to disallow (or at least detect) configuration errors, like
data type mismatches, contradicting combinations of building
blocks, endless loops and more (of course limited by the
possibilities of automated semantic checks). In addition, pre-
defined procedures or macro blocks should be delivered to
allow the easy construction of default strategies.

If the full potential of the described strategy configuration
would be used, operators could greatly benefit from the possi-
bilities. E.g. it would be possible to change the quality of the
optimization results by using different numbers of optimization
steps, depending on the urgency of the new values (many links



fGetNACData

fCompActiveTM
NACData

graph

plannedTM

gGraph

plannedTM

a�b?
a blockingLimits

b
Y

ret.

fCompBudgets
TM

graph

Metrics

gGraph

fCompBlocking
budgets

TM
gBudgets

failScen
gMetrics
gFailScen

fActConfigureBudgets
budgets

copy value gBudgets

a�b?
a blockingLimits

b
Y

ret.

fCompBlocking
budgets

TM
gBudgets

N

N

fCompMetrics TM
graph gGraph

failScen gFailScen

1

1

fCompBudgets
TM

graph

Metrics

gGraph

failScen

a�b?
a b

Y

fCompBlocking
budgets

TM

N

a�ff•b?b

N

fMethAlarm()

Y

fMethInformOperator()

a

copy value

copy value gMetrics

gFailScen

blockingLimits

gBudgets

fActConfigureBudgetsbudgets gBudgets

fActConfigureMetricsmetrics gMetrics

ret.

Fig. 2. Example of a graphical strategy definition

failing at once make a more imminent reaction necessary than
a single failure).

The time of day or the current link loads could influence the
strategy decision. Maintenance tasks or more complex network
reconfigurations could automatically be performed if certain
network statistics (e.g. traffic loads) would fall below given
thresholds.

IV. CONCLUSION

This short paper has outlined the concept of a highly flexible
strategy configuration for a control server to be used in a
Next Generation Network. Using the presented framework,
network operators can quickly define their desired operating
strategy and adapt it to changes of their policies. Automated
assistance during the setup process helps reduce configuration
errors which might otherwise negatively impact the customers’
network experience.

In addition to keeping the network in an optimized operating
condition, the benefits of the flexibly configurable Network
Control Server help to efficiently operate a NGN, which is
one of the key requirements for Network Management today.

REFERENCES

[1] C. Hoogendoorn, J. Charzinski, K. Schrodi, N. Heldt, M. Huber, C. Win-
kler, and J. Riedl, “Towards the Next Generation Network,” in 12th IEEE
International Conference on Network Protocols (ICNP 2004), Berlin,
Germany, Oct. 2004.

[2] K. Schrodi, “High Speed Networks for Carriers,” in 7th IFIP/IEEE
International Workshop, Protocols for High Speed Networks (PfHSN
2002), Berlin, Germany, Apr. 2002.

[3] M. Menth, S. Kopf, and J. Charzinski, “Network Admission Control for
Fault-Tolerant QoS Provisioning,” in 7th IEEE International Conference
on High Speed Networks and Multimedia Communications (HSNMC),
Toulouse, France, June 2004, pp. 1 – 13.

[4] M. Menth, “Efficient Admission Control and Routing in Resilient Com-
munication Networks,” PhD thesis, University of Würzburg, Faculty of
Computer Science, Am Hubland, July 2004.

[5] C. Reichert and T. Magedanz, “A Fast Heuristic for Genetic Algorithms
in Link Weight Optimization,” in 5th International Workshop on Quality
of Future Internet Services (QoFIS), Barcelona, Spain, Sept. 2004.

[6] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP Mis-
configuration,” in Sigcomm, Pittsburgh, USA, Aug. 2002.

[7] O. Bonaventure, C. Filsfils, and P. Francois, “Achieving Sub-50 Millisec-
onds Recovery Upon BGP Peering Link Failures,” in First International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), Toulouse, France, Oct. 2005.


