

Christian Vogt, chvogt@tm.uka.de

- IPv6 Neighbor Discovery
- Vulnerabilities
- Secure Neighbor Discovery (SEND)
- Remaining vulnerabilities

IPv6 Neighbor Discovery Protocol

- Network auto-configuration for IPv6 hosts
- Specified in RFC 2461bis, RFC 2462bis
- State managed in 4 data structures
 - Default router list: IP addresses of available first-hop routers
 - Prefix list: on-link IP address ranges
 - Destination cache: IP destination → IP next hop
 - Neighbor cache: IP next hop → MAC next hop
- ICMPv6 messages for link-local signaling
 - Neighbor Solicitation
 - Neighbor Advertisement
 - Router Solicitation
 - Router Advertisement
 - Redirect

NDP Components

Router discovery

- Find default/first-hop routers
- Discover on-link prefixes ⇒ which destinations are neighbors
- Additional information, e.g., MTU
- Messages: Router Solicitation, Router Advertisement (exchange or periodic advertisements)
- Address auto-configuration
 - Auto-configure IPv6 addresses
 - Stateless (default) or stateful (e.g., through DHCPv6)
 - Based on prefix information delivered in Router Advertisements
 - ≥ 1 address per on-link prefix
 - DHCPv6 provides more than just addresses, such as DNS server,
 SIP server, NTP server, NIS server, etc.

NDP Components (2)

- Duplicate Address Detection (DAD)
 - Verify IP address uniqueness
 - Send Neighbor Solicitation, listen for (defending) Neighbor Advertisement
- Address Resolution
 - Resolves IP address into MAC address
 - Creates neighbor cache entry
 - Exchange of Neighbor Solicitation, Neighbor Advertisement
- Neighbor Unreachability Detection
 - Re-verify bidirectional reachability of neighbors
 - Keeps neighbor cache clean
 - Uses upper-layer information when possible
 - Exchange of Neighbor Solicitation, Neighbor Advertisement

NDP Components (3)

Redirect

- Redirect host to better router
- Redirect host (from first-hop router) to neighbor
- Updates neighbor cache entry
- Transmission of Redirect

Conceptual Security Issues in NDP

- No proof of IP address ownership
 - Attacker can claim victim's IP address
- No IP-MAC address binding
 - Facilitates combination of proxies and bridges
 - Avoiding cross-layer interaction eases implementations
 - Attacker can bind its IP address to victim's MAC address (even if there was a proof of IP address ownership)
- IPsec authentication difficult to deploy
 - IKE not applicable (NDP needed for IP connectivity, IP connectivity needed for IKE, IKE needed for NDP)
 - Requires manual key distribution
 - Potentially many to-be-configured security associations

Vulnerabilities in NDP

- Attack on address resolution
 - Attacker creates false entry in victim's neighbor cache
 - Based on spoofed Neighbor Advertisements, Neighbor Solicitations, Router Solicitations
- Bogus on-link prefix
 - Attacker makes victim believe destination is on-link
 - Attacker can respond to victim's address resolution signaling
- Attack on address configuration
 - Attacker spoofs Router Advertisement with false on-link prefix
 - Victim generates IP address with this prefix
 - Access router drops outgoing packets from victim (ingress filtering)
 - Incoming packets can't reach victim

Vulnerabilities in NDP (2)

Attack on DAD

- Attacker spoofs "negative acks" for victim's DAD attempts
- Victim can't configure IP address ⇒ can't communicate
- Attack on router discovery
 - Attacker tricks victim into accepting itself as default router
 - Based on spoofed Router Advertisements
- Redirect attack
 - Attacker makes victim send packets to arbitrary MAC address
 - Based on spoofed Redirects (from victim's default router)

Vulnerabilities in NDP (3)

- Attack on neighbor unreachability detection
 - Attacker causes solicitor to keep incorrect neighbor cache entry
 - Based on spoofed Neighbor Advertisements
- Replay attacks
 - Attacker replays message with correct address ownership proof and/or signature
- Configuration attacks
 - Attacker spoofs Router Advertisement with false configuration information (e.g., false MTU)

How SEND Tackles This

- Address ownership proof
 - Makes stealing IPv6 addresses "impossible"
 - Used in router discovery, DAD, address resolution
 - Based on Cryptographically Generated Addresses (CGA)
 - Alternative: non-CGAs with certificates (not specified in SEND; future work)
- Message signatures
 - Message integrity protection + sender authentication
 - Used in all NDP messages
 - RSA signature only (ensure compatibility and reduce implementation) complexity

How SEND Tackles This (2)

- Authorization of router functionality
 - Authorizes access router to provide...
 - network prefixes
 - packet forwarding
 - other info distributed by router discovery
 - Based on router certificates
- Replay protection
 - Timestamps for (unsolicited) multicast messages
 - Does not require state, but (loose) clock synchronization
 - Nonces for solicitation-advertisement exchanges
 - State determined by solicitor, echoed by advertiser

What's a CGA?

- IPv6 address with IID = hash of public key (+ parameters)
- CGA = identifier
- Natural binding public key

 identifier
 - Public key → identifier: simple hash
 - Identifier → public/private key: brute force
 - Combined with signature + nonce/timestamp verifies knowledge of public/private key pair

CGA Generation

- SEC == security parameter (0..7 = 3 bits)
- modifier := random()
- hash2 := first(112, SHA1(modifier | 9 zero-octets | public key* | optional extension fields))
- IF first(16*SEC, hash2) ≠ 0 THEN modifier++; goto step 3
- collision count := 0 5.
- cga_parameters := modifier | subnet prefix | collision count | public 6. key* | optional extension fields
- hash1 := first(64, SHA1(cga_parameters)) 7.
- IID := hash1; IID[0..2] := SEC; IID[7] := 0 (u-bit); IID[8] := 0 (g-bit) 8.
- IF DAD positive THEN collision count++; goto step 6 9.
- * DER-encoded ASN.1 structure of type SubjectPublicKeyInfo

CGA Generation (2)

- If SEC > 0, CGA generation not guaranteed to stop after certain iterations
- Generation of CGA with high SEC infeasible with today's technology ⇒ scalable to future advances
- CGAs generated from same public key unlinkable, b/c initial modifier value random ⇒ privacy
- Modifier reusable during network renumbering

CGA Verification

- Validate cga parameters
 - a. If collision count ∉ {0,1,2} THEN return FAILURE
 - b. IF prefix ≠ CGA prefix THEN return FAILURE
- hash1 := first(64, SHA1(cga_parameters))
- 3. IF hash1[3..5,8..63] \neq IID THEN return FAILURE
- SEC := IID[0..2]
- hash2 := first(112, SHA1(modifier | 9 zero-octets | public key* | optional extension fields))
- 6. IF first(16*SEC, hash2) ≠ 0 THEN return FAILURE
- 7. return SUCCESS

New NDP Options in SEND

CGA option

- Required in all NDP messages hosts may originate
- Not required in Router Advertisements and Redirects
- RSA Signature option
 - Required in all NDP messages with CGA
 - Not required in Router Solicitations with unspecified IP source address (no way to bind public key to CGA)

15

Authorizing Router Functionality

- Authorize routers
 - to forward packets
 - to advertise certain prefixes
- Access routers have certificates
- Certification path from router to trusted party
- Hosts pre-configured with trust anchors
- Trust anchors delegate network prefixes
 - to routers
 - to someone who delegates them further, e.g. ISP

Authorization Delegation Discovery

- Initiated by host when certification path is unknown upon receipt of Router Advertisement
- Exchange of Certification Path Solicitation,
 Certification Path Advertisement
- Uses separate messages, rather than options to existing NDP messages
 - Potentially much data (= long certification path)
 - ADD infrequently executed
- Certification paths cached by hosts

No Authorization for Other Param's

- Information not authorized includes...
 - Router's IP address
 - Router lifetime
 - **Prefix lifetimes**
 - Address configuration mode (stateful or stateless)
- But forwarding and prefixes most fundamental
 - Prefixes determine address configuration and topological location
 - Authorization for forwarding \supset authorization for router lifetime
 - Authorization for prefix ⊃ authorization for prefix lifetime and address configuration mechanisms

Certification Path Example

Certification Path →

Pre-configured into host ↓

isp group example.net Issuer:

Validity: Jan 1, 2004 - Dec 31, 2004

Subject: isp_group_example.net

Extensions:

IP address delegation extension:

Prefixes: P1. Pk

... possibly other extensions ...

... other certificate parameters ...

 $P1...Pk \supset Q1...Qr \supset R1...Rs$

Issuer: isp group example.net

Jan 1, 2004 - Dec 31, 2004 Validity:

Subject: isp_foo_example.net

Extensions:

IP address delegation extension:

Prefixes: Q1. Qr

... possibly other extensions ...

... other certificate parameters ...

Issuer: isp foo example.net

Jan 1, 2004 - Dec 31, 2004 Validity:

Subject: router_x.isp_foo_example.net

Extensions:

IP address delegation extension:

Prefixes: R1, ..., Rs

... possibly other extensions ...

... other certificate parameters ...

Deployment Model

- Centralized trust anchor
 - Single, global trusted authorization root
 - Hosts pre-configured with public key(s) of global root
- Decentralized trust anchors
 - Multiple trusted authorization roots
 - Hosts pre-configured with public keys from all roots

NDP Message Protection

- Neighbor Solicitation message
 - CGA option MUST; RSA Signature option MUST
 - CGA = target address during DAD, CGA = source address otherwise
- Neighbor Advertisement message
 - CGA option MUST; RSA Signature option MUST
 - CGA = source address
- Router Solicitation message with specified IP source address
 - CGA option MUST; RSA Signature option MUST
 - CGA = source address
- Router Advertisement message
 - CGA option MAY; RSA Signature option MUST
 - CGA = source address
- Redirect message
 - CGA option MAY; RSA Signature option MUST
 - CGA = source address

NDP Message Validation

- **CGA** verification
 - Tells if public key belongs to CGA owner
 - Involves only hashes
 - Little time-consuming
- RSA signature verification
 - Tells if message sender == CGA owner?
 - Only if CGA verification successful
 - Involves public-key cryptography
 - More time-consuming

CGA Message Option

RSA Signature Message Option

Timestamp Message Option

Nonce Message Option

Remaining Vulnerabilities in SEND

- No confidentiality
- No link-layer security
 - Packets may come from attacker using false IP source CGA
- Still no cryptographic IP-MAC address binding
 - Map victim's MAC address to attacker's CGA
 - Attacker can bombard victim with large download
- Router flooding
 - Bogus packets with spoofed IP destination addresses cause routers to do (lots of) address resolution
 - Alternative solutions: rate limitations, restricting state for pending address resolution processes

(27

Remaining Vulnerabilities (2)

- Brute force against CGA (only 59 "cryptographic bits")
 - Modifier makes brute force harder
- Computational exhaustion
 - Bogus signatures cause hosts to spend time on verification
- Authorization delegation discovery
 - Large number of bogus requests for long certification paths
 - Solution: Routers cache certification paths + negative responses
 - Send large number of (unsolicited) bogus responses
 - Cause hosts to cache this info
 - Solution: Hosts limit cache size, prioritize solicited information
- Replay during timestamp window
 - Negligible (unless advertised information changes)

Problem(s) with SEND

- Issue during design of NETLMM
 - Reuse routers' link-local addresses on different links
 - But: Link-local addresses based on public key, which must be unique per router
 - Link-local addresses can't be reused (identification) problem in SEND)
- Any more...?