
A General Architecture for Wireless Sensor
Networks: First Steps

Bernhard Hurler, Hans-Joachim Hof, Martina Zitterbart
[hurler | hof | zit @ tm.uka.de]

Institute of Telematics
University of Karlsruhe, Germany

Abstract

Wireless sensor networks have become a very attractive research topic in recent years. Many academic
and professional research groups made efforts to construct operative hardware devices and sophisticated
software to meet the special conditions in their projects. But still there has been little done to create a
general structure for smart sensors to cooperate and to offer their services to human or software clients.
In this paper we present first results of our investigations in this topic. As a test scenario and source of
inspiration we set up a sensor network prototype in an office situation, where the physical environment
should be measured and adjusted according to specific conditions. In particular the light and humidity
state of potted plants within an office should be autonomously adjusted to the plants’ special needs as
most research associates in our lab forget to care for their plants on a regular basis. On the basis of this
prolific scenario we introduce a first stage middleware system architecture providing service distribution
and accomplishment within wireless sensor networks. Core components of the architecture have been im-
plemented in hardware and software to show the feasibility and abilities of our approach.

Introduction and Scenario
In recent years the field of wireless sensor networks
has attracted considerable interest among numerous
research groups all over the world. Efforts has been
made to create small and power efficient hardware
(e. g. SmartDust [WLLP01]) to allow small battery
powered devices enhanced with sensor capabilities
to communicate wirelessly and give information of
the physical world. There are proposals as well for
specialized software running on devices with lim-
ited power, memory and computation resources.
TinyOS [LC02] is an example for an attempt to
provide basic functions of an operating system on
small devices.

The various approaches are quite successful in
executing the specific tasks or example scenarios
they are designed to. Nevertheless they tend to have
a monolithic implementation and do not provide a
generic architecture to implement new tasks or
change ongoing tasks in a simple and well struc-
tured fashion. Thus, they constrain interoperability
of components from different research groups.

Therefore we introduce in this paper a generic sys-
tem architecture for sensor networks, which could
function as a basis for a middleware component
allowing easy and flexible access to the functions of
a sensor network.

A sensor networks consists out of several small
devices, which are autonomous in their communi-
cation and computation capabilities. All of them
can be equipped with sensors and actuators to
measure and alter physical values in their environ-
ment. To have a sensible and prolific test case for
our middleware approach we designed a sensor
network scenario with a couple of sensors and ac-

tuators. We constructed a flower pot capable of
sensing humidity, a correspondent actuator granting
the right amount of water for the flower, and a
jalousie regulating the light conditions in coopera-
tion with a light sensor (see fig. 1). All sensor (ac-
tuator) devices act autonomously and are expected
to fulfil their respective primitive tasks (i.e. measur-
ing or altering physical values). To accomplish the
common goal of cultivating the flower they have to
communicate with each other and react to static
preconditions or dynamic change of the environ-
ment. Prior to any interaction, a binding of the
actuator and some sensors is needed.

Fig. 1: Autonomously cultivated flower (with auto-
matic water and light adjustment by a sensor net-
work)

This scenario has most of the components and char-
acteristics with which middleware systems have to
deal. Multiple tasks have to be fulfilled whereas
several small tasks are necessary to accomplish a
common goal. The tasks may change over time and
have to be altered or replaced either by machine or
human interaction. The user issues a command
(“cultivate this flower”) to the sensor network and
the sensor network self-organizes to fulfil this task.

In the following section we present our approach to
a generic system architecture for sensor networks
middleware. Then we give insights into the hard-
ware and software implementation of the architec-
ture and the flower pot scenario. The last section we
give an overview of the current stage of our re-
search efforts and our mid-term plans.

Architecture

Fig. 2: Architecture for sensor networks

In fig. 2 we present a common architecture for
sensor networks. In this short paper we concentrate
on two main topics, which are most crucial for a
functional sensor network: Service Manager and
Distributed Service Directory.

The Service Manager is responsible for receiving
and accomplishing services. It accomplishes the
binding of actuators and sensors.

The Distributed Service Directory offers service
lookup and is therefore necessary for the process of
pairing sensors and actuators in a self-organizing
environment. As the Distributed Service Directory
is crucial for the whole Architecture, great impor-
tance has been attached to robustness and security
issues.

Implementation details
The whole “ flower” scenario consists out of four
individual smart devices. Each of them is equipped
with an Atmega128L microcontroller, a Bluetooth
module (class 2), and device dependent sensors or
actuators (see fig. 3). The microcontroller is re-
sponsible for the internal communication with its
respective sensor or actuator and with the Bluetooth
module. Furthermore it provides the smart part of
the whole device, which is respectively the imple-
mentation of the architecture presented in the last
section. In particular it provides the (external)

communication with the sensor network via Blue-
tooth and the distribution and execution of primi-
tive or complex services.

Fig. 3: “ Saucer” for the flower pot with microcon-
troller and Bluetooth module

The services itself are written in a newly developed
language, which allows a nested description of
simple and complex tasks to be accomplished by
single devices or by the whole sensor network. All
service descriptions consist out of four basic service
types. There are two primitive types (query and
order) and two complex types (conditional and
repetitive).

All devices provide at least one so-called primitive
service, which is a simple query of physical data on
sensor devices and a plain order to change a physi-
cal value on actuator devices. The primitive query
service allows requesting a sensor device to send
data with certain accuracy and maximum age to an
interested network partner. The primitive order
service allows requesting an actuator device to
change a physical value with a certain priority to a
given value, where it remains for the specified time
period. In order to react reasonably to a changing
environment a complex conditional service is avail-
able. It is based on one or two query services and
dependent on the result of the query or the compari-
son of the two queries it causes the service manager
to execute a list of service IDs (pointing to primi-
tive or complex services). Finally there is a complex
repetitive service to implement recurrent tasks of
the sensor network. This kind of service repeats the
execution of arbitrary (both primitive and complex)
services given in a list (with service IDs) for a cer-
tain amount of time with a specific frequency.

All kinds of services reside in the Distributed Ser-
vice Directory, where they can be stored by the user
and retrieved by the smart devices, which have to
perform certain services.

The DSD is based on S-CAN, an enhancement of
Content Addressable Networks (CAN) presented in
[RAT01]. CAN realises a distributed hash table. It
has been enriched by a protocol for secure construc-
tion. The protocol only uses symmetric cryptogra-
phy and establishes a shared secret between

neighbours in the Content Addressable Network.
The protocol ensures, that takeover of some nodes
only has minor impact on the whole distributed
hash table and that no attacker can overtake a dis-
tinguished part of the hash table. It also ensures
integrity by the use of redundancy similar to
[CLA00] and [Kub00]. The basic idea of S-CAN is
the existence of a so called Master Device which is
used to bring new devices into the sensor network.
The Master Device does not store any information
about the sensor network, thus it is stateless and can
easily be replaced. All necessary symmetric keys
for communication between the Master Device and
a member of the S-CAN are derived on the fly by
the Master Device. A joining device gets a kind of
join-ticket from the Master Device which enables
the joining device to overtake a specific part of the
distributed hash table and thereby join the S-CAN.
Later on, the Master Device checks, if the joining
device really joined at the specified place. The
Master Device also assists in building trust between
the joining device and its new S-CAN neighbours.

The Distributed Service Directory uses the S-CAN
to store service descriptions. Insertion in the dis-
tributed hash table is done by simply hashing the
service name and using the hash as an address in
the virtual overlay space constituted by S-CAN.
The same procedure is used to lookup services.
Queries can be issued which include necessary
parameter ranges etc. To avoid an unbalanced load
on the nodes of the distributed hash table, the ser-
vice names may be spread, for example by adding
some location information to the service name
before hashing or by building hierarchies which are
encoded in the service string which will be hashed.
This also makes lookups more efficient.

In the flower pot example there are two main ser-
vices, which are executed at the same time. One
service makes sure that the light is appropriate for
the flower; the other one takes care of water provi-
sion. The first one is a repetitive service which
continuously reruns two conditional services. Both
of them evaluate a query service on the light sensor
attached at the flower. Assuming that there is to
much light for the flower the first conditional ser-
vice makes the jalousie to decrease the solarisation;
the second one does vice versa in the case of too
little light. The second repetitive service responsi-
ble for appropriate humidity in the flower pot is
similarly implemented. If changes in the service
description occur, e.g. a new plant with different
needs is bought, it could be propagated with very
little effort to the sensor network. It then reacts
immediately to the modifications without the need
for “wired” contact to the smart devices.

To store new services in the Service Directory or
the smart devices itself Bluetooth is used as com-
munication technology. The devices are communi-
cating via Bluetooth directly or via a dedicated
central desktop computer. We decided to build up
our flower scenario with the centralised approach.

This allows observing the communication activities
in the sensor network and gives the possibility to
change network characteristics (like accessibility
and communication speed) and evaluate the effects
easily. Bluetooth is used for our test bed, because
off-the-shelf hardware is cheap and available. Nev-
ertheless the proposed architecture itself is inde-
pendent of the underlying networking layer.

Current stage and mid-term
goals
At the current stage we are able to distribute ser-
vices via Bluetooth and make the devices to ac-
complish their common task autonomously. Both
single primitive services and complex services can
be changed or replaced easily and propagated wire-
less to the sensor network. The Distributed Hash
Table is not integrated in the flower scenario yet.
So the services are sent directly to the accordant
devices. A simulation of the DSD-protocol is work-
in-progress.

Still there is work to be done to define properly the
communication protocol of the Service Manager
responsible for exchanging services and user data
between the different smart devices. The prototype
implementation of the protocols serves as a proof of
concept but has to be refined in the future.

The partial implementation of our general architec-
ture and its application to the flower pot scenario
gave promising results. Based on the knowledge we
could obtain, while dealing with our prototype, we
are confident to improve and complete the current
prototype to a functional and useful middleware for
wireless sensor networks.

References
[CLA00]: Ian Clarke, Oskar Sandberg, Brandon Wiley and
Theodore W. Hong: “Freenet: A Distributed Anonymous Infor-
mation Storage and Retrieval System”, in Proceedings of the
ICSI Workshop on Design Issues in Anonymity and Unob-
servability, Berkeley, USA, 2000

[Kub00]: J. Kubiatowicz, et al: “OceanStore: An Architecture
for Global-Scale Persistent Storage” , Proceedings of ACM
ASPLOS, December 2000

[LC02]: Phil Levis and David Culler, “Maté : a Virtual Machine
for Tiny Networked Sensors” , ASPLOS, December 2002

[RAT01]: Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp and Scott Shenker, „A Scalable Content-
Addressable Network“, In Proceedings of ACM SIGCOMM
2001, August 2001

[VCCC+02]: P. Veríssimo, V. Cahill, A. Casimiro, K. Cheverst,
A. Friday and J. Kaiser. “CORTEX: Towards Supporting
Autonomous and Cooperating Sentient Entities” . Proceedings of
European Wireless 2002, Florence, Italy, February 2002

[WLLP01]: B. Warneke, M. Last, B. Leibowitz, K.S.J. Pister,
"Smart Dust: Communicating with a Cubic-Millimeter Com-
puter", Computer Magazine, Jan. 2001. IEEE, Piscataway, NJ.
pp. 44-51

