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Abstract. Network hazards like attacks or misbehaving nodes are still a great 
obstacle for network operators. Distributed denial of service attacks and worm 
propagations do not only affect the attacked nodes but also the network itself by 
wasting network resources. In wireless ad hoc networks even more hazards ex-
ist due to its self-organizing characteristic. A detection of such network hazards 
as early as possible enables a fast deployment of appropriate countermeasures 
and thereby significantly improves network operation. Our proposed detection 
system uses programmable network technology to deploy such a system within 
the network itself. Doing this without influencing the routing performance seri-
ously demands a resource saving architecture. We therefore propose to use a hi-
erarchical architecture which runs a very small basic stage all the time and loads 
specialized detection modules on demand to verify the network hazard. In this 
paper we introduce our system which can detect DDoS attacks, worm propaga-
tions, and wormhole attacks. 
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1 Introduction 

In today's networks hazards are frequent and comprise various kinds of attacks as well 
as serious changes of the network itself. To automatically detect such hazards is still a 
challenge for network operators on the one hand. On the other hand more and more 
self-managed networks like ad hoc networks evolve. Such networks require an auto-
nomic mechanism to detect hazards and employ fitting countermeasures autono-
mously. The range of network hazards we have in mind include network attacks like 
distributed denial-of-service (DDoS) attacks [6,9] or worm propagations [15,11] but 
also wormhole attacks [8] or misbehaving nodes in wireless ad hoc networks. 

The earlier such hazards can be detected the better the network can be protected 
against them [17]. This requires a detection system within the network. Programmable 
networks enhance routers to flexibly and dynamically set up new services on that 
router. Furthermore it eases the update process of service modules since their func-
tionality gets not tightly coupled to the packet forwarding but is loaded on demand. 
For these reasons we decided to build our system for anomaly detection based on 
programmable network nodes and to implement service modules which can generate 
indications of the occurrence of network hazards. If a new kind of hazards has to be 
detected we just want to add specialized service modules which can detect this new 
kind of hazards without any changes to the rest of the system. 
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With DDoS attacks [6,9] which are a major threatening type the attacker does not 
exploit a weakness of the victim's operating system or application but aims to over-
load resources like link capacity or memory by flooding the system with more traffic 
than it can process.  The attack traffic is generated by many slave systems which the 
attacker has compromised before. The attacker only has to coordinate all these slave 
systems to start the attack nearly at the same time against a single victim. As soon as 
the victim is not reachable anymore no reverse traffic is sent back to slave systems or 
error messages are generated by routers close to the victim. Such changes of the traf-
fic can be detected by combining various anomalies. 

Another threat to the Internet today are worms [15,11]. This piece of software 
automatically exploits security holes in operating systems or applications to infiltrate 
a system and starts to propagate itself to as many other systems as possible. Today's 
countermeasures to worms are signature-based detection systems scanning for well-
known worms. These systems are typically located at the victim's edge of the internet 
preventing the worm propagation to a specific network. An earlier detection of such a 
worm propagation is possible if the detection system is located in the network itself. 
There a signature-based detection system is not applicable since it needs deep packet 
inspection which is infeasible without additional special-purpose hardware. Further-
more, a signature-based detection system is not able to detect previously unknown 
worms at all. To achieve a detection of unknown worms an anomaly-based detection 
system can be used. Such a system also has to be deployed within the network to 
ensure an optimal protection of the network. An anomaly-based detection system can 
collect hints on a worm propagation for example by analyzing the ratio of error mes-
sages due to closed ports generated by scanned systems to the total number of connec-
tion requests. 

In wireless networks other hazards are possible in addition to DDoS attacks and 
worm propagations due to the different medium type. Since a wireless medium allows 
mobility and can not guarantee any knowledge about a participating node it is much 
easier to threaten the routing protocol or certain connections than it is in wired envi-
ronments. A possible attack in wireless networks is the wormhole attack [8]. By es-
tablishing a wormhole an attacker aims at attracting as much traffic as possible to a 
node controlled by himself. If a proactive routing protocol is used this is achieved by 
influencing routing metrics in such a way that other nodes assume the attacker in their 
neighborhood due to the established tunnel. In fact however the attacker is far away. 
If a reactive routing protocol is used new routes are established through the tunnel 
since the tunnel enables the attacker to send a route request faster to the destination 
than this is possible over normal multi-hop communication. If the attacker succeeds in 
establishing a wormhole he can attack certain connections or the connectivity of great 
parts of an ad hoc network by dropping packets arbitrarily. Therefore, a wormhole 
attack causes an anomalous increase of traffic near the tunnel endpoints as well as an 
increasing drop rate of packets which are routed over the tunnel. 

Our approach to build a hazard detection system uses anomaly-based detection 
functionality, e.g. stochastic anomalies, distribution anomalies or protocol anomalies. 
All these anomalies give hints to a current hazard. We analyzed various hazards in 
different scenarios and concluded that a system which can easily be adapted to these 
scenarios would prove valuable. Such a system for anomaly-based hazard detection is 
presented in this paper.  
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The paper is organized as followed: In section 2 we detail on the architecture of the 
system for anomaly detection and we explain the special characteristics of our system. 
Furthermore we describe two scenarios which we think the detection system can be 
deployed in – a small provider network and an ad hoc network. Section 3 presents 
implementation details for one of the described scenarios, the small provider network, 
and an evaluation of the system for anomaly detection. Additionally we will go into 
memory usage details. Section 4 gives a short summary. 

1.1   Related Work 

There are some existing approaches that try to detect DDoS attacks or worm propaga-
tions based on programmable networks. Some of these even use anomaly-based de-
tection mechanisms. Approaches which mainly focus on mitigation and remediation 
are not discussed here. One approach of Sterne et al. [16] detects stochastic anomalies 
by using a simple threshold based DDoS detection mechanism. The system consists of 
three components: the DDoS flood detector, a management station which dispatches 
an active program in case of a DDoS detection and routers which are active network-
ing nodes and are able to execute the active program. A drawback with this approach 
is that after detecting a DDoS flood by a sudden increase in packet distribution no 
further verification of the attack is done but immediately a rate limiter is installed on 
the active nodes. Another approach, IBAN [4], detects worm propagations based on 
active networks. Therefore, a management station distributes so called scanners on 
active networking edge routers. These scanners search for a specific vulnerability  
on all hosts which are connected to the edge router. This means that only known 
worms can be detected. For every newly announced vulnerability a new scanner has 
to be implemented first and distributed in the active network afterwards. If a vulner-
able host is detected by such a scanner the management station is informed and the 
distribution of a blocker to the proper edge router has to be started manually. Thus, 
this approach uses some kind of signature-based detection and does not react auto-
matically on worm propagations. 

The pushback mechanism [10] is activated as soon as congestion occurs on a 
router. In this case a flooding attack is assumed and the packets which are dropped on 
the router due to congestion are inspected in more detail. The mechanism supposes 
that the distribution of dropped packets resembles the distribution of the whole packet 
stream and rate limits the highest bandwidth aggregate of packets. This is done for 
further aggregates until congestion has disappeared on the outgoing links. Afterwards 
rate limiters for the aggregates are installed in upstream active network routers to 
reduce congestion of the incoming links. This approach has several disadvantages: 
one of these is the fact that an attack can be detected not until congestion occurs on a 
router and hence a detection is only possible at the edge of the network. Another 
problem is the fact that no further verification is done if the rate limited aggregates 
really belong to an attack. AEGIS [3] proposes the deployment of so called shields 
which scan for several different anomalies and therefore, have to do a deep packet 
inspection which can cause a delayed forwarding of packets if no special-purpose 
hardware is used. Additionally, a commander scans for further anomalies in the ag-
gregated traffic behind the shields and tries to learn fingerprints of normal traffic to  
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detect DDoS attacks. This procedure is likely to use much resources, primarily  
memory and processor time, and therefore, causes additional costs if new hardware is 
needed. 

Our approach is based on the usage of a software system to achieve network anom-
aly detection. It is, however, possible to carry out some or all of the proposed detec-
tion mechanisms on network processors [13] or some other special-purpose hardware. 
This causes additional costs and changes to the currently deployed infrastructure but 
in some cases provides better performance of the system for network anomaly detec-
tion. In both approaches – software-based or hardware-based – resource management 
is needed in order to use the available resources efficiently [7]. 

2   Architecture and Usage Scenarios 

In subsection 2.1 we focus on the architecture of our system for network anomaly 
detection. Afterwards deployment of the system in two usage scenarios – a small 
provider network and an ad-hoc network – is introduced in more detail and anomalies 
usable for anomaly detection are described (see subsections 2.2 and 2.3). 

2.1   Architecture 

We developed a system for anomaly detection that is hierarchical, anomaly-based, 
extensible and flexible. A hierarchical system saves resources by splitting anomaly 
detection, respectively, into several stages. Thus, the common functionality of a node 
which runs an anomaly detection system is less affected by a hierarchical system than 
by a system that keeps its whole functionality in one stage. A hierarchical system for 
example ensures less memory usage on a router since only some easy calculations are 
needed in the basic stage. A system composed of only one stage has to maintain much 
more state for anomaly detection and therefore, causes a much higher memory usage. 
Thus, low resource consumption due to a hierarchical design ensures applicability in 
different kinds of networks. Because of this characteristic our system can even be 
deployed on nodes with limited resources like routers in small provider networks or 
PDAs in wireless ad-hoc networks. 

Additionally, it is very easy to introduce new anomalies into the basic stage of the 
detection system or new aggregate specific anomalies. This flexibility also ensures 
applicability in different network scenarios. Examples for the definition of aggregates 
in the basic stage and for detectable anomalies in suspicious aggregates in the second 
stage are given in this section.  

The attack detection system analyzes in its basic stage the packet distribution 
within specific aggregates and scans for indications of an attack by detecting stochas-
tic anomalies. Therefore, the packet stream is divided on the fly into intervals with a 
fixed length. Furthermore, aggregates of interest are defined for observation. The 
notion aggregate in this paper refers to a set of packets with the same characteristics 
and therefore, predefined aggregates are for example all TCP or all UDP packets in a 
small provider network or all routing packets in an ad-hoc network. Then for each 
predefined aggregate the number of packets that belong to this aggregate is counted in 
every interval. An indication of an attack then is found if the observed number of 
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packets exceeds a predefined packet threshold of the aggregate. To make the system 
self-adaptable to network load changes a dynamic packet threshold representing the 
average packet count in this aggregate for the last couple of intervals is calculated. At 
the end of every interval a check for each aggregate is performed if the observed 
number of packets exceeds the packet threshold. To prevent the system from generat-
ing false positive indications and starting the next stages for deeper inspections un-
necessarily an interval threshold is defined. This interval threshold is necessary due to 
the self-similarity of internet traffic [12] which can cause normal traffic to exceed the 
packet threshold even though no attack is currently going on. Therefore, an indication 
only is generated and further detection stages are loaded if the packet threshold is 
exceeded in more consecutive intervals than the interval threshold. These detection 
stages will subsequently check the suspicious aggregate in more detail. 

After detecting an indication for an attack or a network problem, respectively, by 
an exceeding of the threshold a second stage will be loaded. This second stage exam-
ines the suspicious aggregate in more detail by scanning for the currently defined 
aggregate specific anomalies.  Additionally the detection system offers the possibility 
to load several consecutive stages for a more detailed analysis after detecting a sto-
chastic anomaly in the basic stage. Because the suspicious aggregate is only a subset 
of the whole packet stream more detailed analysis can be done with low resource 
consumption and thereby low detraction of a node's common functionality. 

The advantage of our system for anomaly detection is the fact that it can be used 
in very different networks and scenarios due to its flexibility. Dependent on the 
underlying network aggregates can be defined for observation in the basic stage 
which are likely to show some anomalies if an attack, a misconfiguration or a net-
work problem occurs. Thus, in wired networks DDoS attacks and worm distribu-
tions are attack types that are common. Due to this a priori knowledge aggregates 
are defined based on transport protocols like UDP and TCP or on the network pro-
tocol ICMP. In a wireless ad-hoc network further attack types like the wormhole 
attack or network problems due to a misbehaving node are possible. Thus, in ad-hoc 
networks additional aggregates can be defined based on different packet types like 
routing and data packets. 

2.2 Attack Detection in a Small Provider Network 

The first example for the deployment of our system for anomaly detection is the de-
tection of anomalies which indicate DDoS attacks or worm propagations in small 
provider networks since these attacks are the most prevalent hazards in this usage 
scenario. Therefore, the system scans for stochastic anomalies based on a packet and 
an interval threshold to detect attacks in the basic stage as described above. After 
detecting a stochastic anomaly in the basic stage the system loads two consecutive 
stages.  The second stage uses a distribution anomaly to make a differentiation be-
tween DDoS attacks and worm propagations. This can be achieved by analyzing the 
distribution of packets into subnet prefixes based on destination addresses. Therefore, 
the whole address space is divided into subnet prefixes based on the routing table of 
the node deploying the detection system. If large parts of the suspicious traffic – the 
number of packets by which the packet threshold was exceeded – are sent into exactly 
one subnet a DDoS attack is indicated since only one victim is currently attacked. If 
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the suspicious traffic is equally distributed to all existing subnets a worm propagation 
is assumed since worms spread all over the internet. Dependent on the results of the 
second stage attack type specific protocol anomalies are scanned for in the third stage 
to identify either DDoS attacks or worm propagations in more detail. That means that 
only DDoS specific protocol anomalies are examined in the third stage if the second 
stage detected a distribution anomaly indicating a DDoS attack. Currently the anoma-
lies used in our system for network anomaly detection offer no possibility to differen-
tiate between DDoS attacks and legitimate traffic with the same characteristics, e.g. 
flash-crowd events [1]. Some example protocol anomalies that can be used to detect 
DDoS attacks or worm propagations in the third stage are described first. More proto-
col anomalies that can be used to detect worm propagations and other DDoS attacks 
can be found in [14]. 
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Fig. 1. Architecture of system for attack detection in small provider networks 

Figure 1 shows the architecture of our detection system as deployed in a small pro-
vider network. It consists of three stages: The basic stage scans for stochastic anoma-
lies within the predefined aggregates like TCP packets, UDP packets, and ICMP 
packets. The further stages are loaded on demand after a stochastic anomaly indicates 
a suspicious aggregate. The second stage differentiates between DDoS attacks and 
worm propagations by analyzing the destination address distribution in this aggregate. 
Depending on this analysis protocol anomaly detection modules for either a DDoS 
attack or a worm propagation are loaded. 

As already mentioned the aggregates TCP packets, UDP packets, and ICMP pack-
ets are defined for attack detection in wired networks. The third stage of the detection 
system is based on the fact that most of the existing DDoS attacks lead to a breach of 
symmetry between incoming and outgoing packet classes which belong together by 
protocol definition. A packet class here refers to a set of packets with the same char-
acteristics, for example all TCP packets with SYN flag set. Thus, a DDoS attack can 
often be detected by a developing asymmetry of packet classes that belong together. 
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A SYN flooding attack for example tries to exhaust a victim's open connection 
storage space by flooding the victim with TCP packets with SYN flag set. Due to the 
mass of connection requests the victim can only respond to a part of all requests by 
sending TCP packets with SYN and ACK flag set. All remaining requests are dropped 
and the victim sends no response if storage space is already exhausted and the TCP 
instance is already down. This leads to an asymmetry between incoming TCP packets 
with SYN flag set and outgoing TCP packets with SYN and ACK flag set which can 
be used to detect this kind of DDoS attack. 

Another possible DDoS attack is the smurf attack [2], named after its exploit pro-
gram, which tries to exhaust the victim's bandwidth by flooding the victim with 
ICMP echo reply messages. Therefore, ICMP echo request messages with forged 
source addresses are sent to so called reflector systems. These reflector systems in 
turn response with ICMP echo reply messages to the forged sender address – the 
address of the victim. If an ICMP request packet is sent to the directed broadcast 
address of a whole subnet all systems in the subnet will answer the request and thus, 
amplify the strength of the DDoS attack. This attack leads to an asymmetry between 
ICMP echo request packets sent by the victim and ICMP echo reply packets re-
ceived by the victim. 

An example for a protocol anomaly that can be used for detection of a worm 
propagation utilizes the fact that a worm tries to infect other hosts randomly. Addi-
tionally, most vulnerabilities a worm tries to exploit are tied to a single port number. 
A worm propagation based on UDP sends packets with destination port set to the 
vulnerable port number to randomly selected hosts. If some of these hosts have 
patched their system already or the vulnerable port is closed anyway these systems 
send an ICMP packet containing the error message “port unreachable” back to the 
sender of the UDP packet. If the system or network does not exist at all an ICMP 
message “host/network unreachable” is generated. Because most worms propagate 
randomly the ratio of ICMP packets with these error messages will increase during a 
worm propagation. This protocol anomaly can be used to verify a worm propagation 
detected already by a stochastic anomaly and a distribution anomaly. 

2.3 Attack Detection in an Ad-Hoc Network 

The second scenario we looked into are wireless ad-hoc networks. In ad-hoc networks 
the participating nodes themselves form the networking infrastructure in an ad-hoc 
fashion to achieve an autonomous, mobile, wireless domain. Our system can be de-
ployed in such a network for anomaly-based detection of attacks, too. In addition to 
the previous described type of attacks ad hoc specific kinds of attacks can be detected, 
e.g. wormhole attacks. For this kind of attack an attacker uses a tunnel achieved for 
example by a directed antenna or by a wired link to send packets over only a few hops 
to an endpoint far away from the source node. Without the tunnel the packets would 
have been sent over multiple hops and would have taken significantly more time to 
reach the endpoint. Due to the tunnel – and thus, the “short” distance between source 
and destination – the attacker can achieve that much more traffic is sent over the tun-
nel endpoints controlled by himself than normal routing would do. Thereby, the at-
tacker is able to attack certain connections or the connectivity of a great part of the  
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network by dropping packets that are routed over the tunnel controlled by himself. 
Figure 2 shows the architecture of our anomaly-based attack detection system in wire-
less ad-hoc networks. 
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Fig. 2. Architecture of system for attack detection in ad-hoc networks 

In case of an ongoing wormhole attack an increase in the number of data packets 
can be detected in the direct environment of the tunnel endpoints. This is a stochas-
tic anomaly that can be detected by the basic stage. The subsequently loaded next 
stage analyzes the packets in more detail to distinguish the wormhole attack from 
DDoS attacks or worm propagations. The differentiation between DDoS attacks and 
worm propagations can be done by detection of a distribution anomaly described 
already in subsection 2.2 but with a slight difference: the address space is divided 
into host addresses instead of subnets due to the lower number of nodes in wireless 
ad-hoc networks. The differentiation between these two attacks and wormhole at-
tacks can be done by another distribution anomaly. During an ongoing wormhole 
attack the distribution of next hop addresses in the forwarding table tends towards 
one address that is the next hop for almost all known destination addresses. To 
verify a suspected wormhole attack the third stage analyzes the suspicious aggre-
gates and checks if the packet drop rate exceeds a certain threshold. This can be 
realized by a protocol anomaly module which scans for asymmetries in number of 
data packets to number of acknowledgement packets ratio for instance. Therefore, 
the third stage gets enhanced with this mechanism if deployed in a wireless ad-hoc 
network. The verification of worm propagations or DDoS attacks is done as de-
scribed in the small provider scenario. 

3 Implementation and Evaluation 

The described attack detection system has been implemented on the programmable 
network platform FlexiNet [5] based on the Linux operating system. Thus, a service 
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module can install iptables filter rules according to the PSAMP packet selection defi-
nition [18] which allows packet selection based on packet header field matching as 
well as packet sampling schemes. A selected packet is fed to the FlexiNet execution 
environment via the netlink interface. To preserve the packet order of all flows a copy 
of the selected packets is fed to the execution environment instead of the real packet 
which is forwarded regularly on the IP layer. 

The basic stage of the anomaly detection system is implemented as a service mod-
ule which is the only module loaded at system startup. This module processes the 
packets selected by the installed iptables filter rules. If the basic stage detects a sto-
chastic anomaly in any aggregate by an exceeding of the packet threshold in more 
consecutive intervals than the interval threshold, specialized modules for stage two 
are loaded. 

The basic stage monitors the number of packets within the predefined aggregates. 
For the simulation of the ICMP echo reply flooding attack we used a background 
traffic with an average data rate of about 3 Mbit/s. Due to the rather low bandwidth of 
the background traffic the following simulation and evaluation is only a first step 
towards a small provider scenario but nevertheless, we can show that the mechanisms 
of our detection system work. The average ICMP traffic within this background traf-
fic was 1,8 kbit/s. The simulated attack traffic generated about 400 ICMP packets per 
interval resulting in an attack data rate of about 3,6 kbit/s of additional ICMP traffic. 
That is 0,12 % of the overall traffic. 
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Fig. 3. Packet distribution of an ICMP echo reply flooding attack 

The combined traffic – background and attack traffic – was analyzed by our attack 
detection system. This packet stream is shown in figure 3. Additionally the packet 
threshold which is used to detect attacks in the ICMP aggregate by a stochastic anom-
aly is shown. The red line shows the observed number of ICMP packets per interval 
whereas the green line shows the packet threshold. The threshold is calculated as 
described in section 2.1 based on the aggregate's average packet count for the last 
couple of intervals. If an indication is generated due to an exceeding of the threshold 
for more consecutive intervals than the interval threshold, the threshold remains con-
stant while the attack is running. We can clearly see that the simulated attack begins 
in interval 13 since the basic stage detected an indication for an attack in this interval. 
The exceeding of the packet threshold in more consecutive intervals than the interval 
threshold in the aggregate ICMP packets results in loading further stages of the  
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detection system in interval 17. The second stage checks only the suspicious aggre-
gate ICMP packets for a distribution anomaly which provides a differentiation be-
tween a DDoS attack and a worm propagation. In the simulation one specific subnet 
could be detected which most of the traffic is sent to by analyzing the distribution of 
suspicious packets to subnets. Thus, the third stage is loaded that checks only those 
packets of the suspicious aggregate that are sent into the suspicious subnet for DDoS 
specific protocol anomalies. In our simulation the third stage was able to detect an 
asymmetry between incoming ICMP echo reply packets and outgoing ICMP echo 
request packets as described in subsection 2.2. 
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Fig. 4.  Memory usage of the framework during an ongoing attack detection 

Besides validating the functionality of our approach with this setup we also meas-
ured the resource consumption of our system. Figure 4a first shows the memory usage 
of the detection system during the ongoing attack detection described above. The 
graph shows the system's virtual memory size which is composed of code size, heap 
size and stack size. The lion's share of the memory usage of about 1750 kBytes is 
consumed by the execution environment itself. After loading the basic stage about 
1960 kBytes virtual memory are used. In interval 17 memory usage increases due to 
the loading of the further stages. Figure 4b again shows the memory usage of the 
system during the attack detection phase but only intervals 15 through 25 with an 
adjusted y-axis scale. During this phase about 100 kBytes additional memory are 
allocated for the second stage. The third stage even needs just about 70 kBytes addi-
tional memory. After unloading the third stage in interval 22 the memory usage again 
is 1960 kBytes as it was before detecting a stochastic anomaly. These measurements 
show that our modular and hierarchical system needs just a small amount of virtual 
memory.  

4 Summary 

In this paper we presented a system for network anomaly detection which is hierar-
chical, anomaly-based, extensible and flexible. These characteristics provide for the 
ability to be deployed in different network environments as well as the ability to de-
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tect various network hazards. DDoS attacks, worm propagations, and wormhole  
attacks are examples of such network hazards. We showed how stochastic anomalies, 
distribution anomalies, and protocol anomalies can be used to detect these and intro-
duced the architecture of our detection system in a small provider network scenario 
and a wireless ad-hoc network scenario. 

A simulation of an ICMP echo reply flooding attack shows that our anomaly-based 
system is able to detect DDoS attacks. Furthermore we verified that our hierarchical 
and modular system needs only a small amount of memory to realize the detection 
functionality. 

In this paper simulation and evaluation were done only with low-bandwidth back-
ground traffic. Thus, future research has to address simulations using background 
traffic with a higher bandwidth to simulate a more realistic small provider network. In 
this context, the detection performance – e.g. the number of false positives – has to be 
examined. Furthermore, some work has to be done to achieve a differentiation be-
tween network hazards like DDoS attacks and legitimate traffic with similar charac-
teristics, e.g. flash-crowd events. 
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