
D. Gaiti et al. (Eds.): AN 2006, LNCS 4195, pp. 97 – 108, 2006.
© IFIP International Federation for Information Processing 2006

An Extensible and Flexible System for
Network Anomaly Detection

Thomas Gamer, Marcus Schöller, and Roland Bless

Institut für Telematik
Universität Karlsruhe (TH), Germany

Abstract. Network hazards like attacks or misbehaving nodes are still a great
obstacle for network operators. Distributed denial of service attacks and worm
propagations do not only affect the attacked nodes but also the network itself by
wasting network resources. In wireless ad hoc networks even more hazards ex-
ist due to its self-organizing characteristic. A detection of such network hazards
as early as possible enables a fast deployment of appropriate countermeasures
and thereby significantly improves network operation. Our proposed detection
system uses programmable network technology to deploy such a system within
the network itself. Doing this without influencing the routing performance seri-
ously demands a resource saving architecture. We therefore propose to use a hi-
erarchical architecture which runs a very small basic stage all the time and loads
specialized detection modules on demand to verify the network hazard. In this
paper we introduce our system which can detect DDoS attacks, worm propaga-
tions, and wormhole attacks.

Keywords: Programmable Networks, Anomaly Detection, DDoS Attacks.

1 Introduction

In today's networks hazards are frequent and comprise various kinds of attacks as well
as serious changes of the network itself. To automatically detect such hazards is still a
challenge for network operators on the one hand. On the other hand more and more
self-managed networks like ad hoc networks evolve. Such networks require an auto-
nomic mechanism to detect hazards and employ fitting countermeasures autono-
mously. The range of network hazards we have in mind include network attacks like
distributed denial-of-service (DDoS) attacks [6,9] or worm propagations [15,11] but
also wormhole attacks [8] or misbehaving nodes in wireless ad hoc networks.

The earlier such hazards can be detected the better the network can be protected
against them [17]. This requires a detection system within the network. Programmable
networks enhance routers to flexibly and dynamically set up new services on that
router. Furthermore it eases the update process of service modules since their func-
tionality gets not tightly coupled to the packet forwarding but is loaded on demand.
For these reasons we decided to build our system for anomaly detection based on
programmable network nodes and to implement service modules which can generate
indications of the occurrence of network hazards. If a new kind of hazards has to be
detected we just want to add specialized service modules which can detect this new
kind of hazards without any changes to the rest of the system.

98 T. Gamer, M. Schöller, and R. Bless

With DDoS attacks [6,9] which are a major threatening type the attacker does not
exploit a weakness of the victim's operating system or application but aims to over-
load resources like link capacity or memory by flooding the system with more traffic
than it can process. The attack traffic is generated by many slave systems which the
attacker has compromised before. The attacker only has to coordinate all these slave
systems to start the attack nearly at the same time against a single victim. As soon as
the victim is not reachable anymore no reverse traffic is sent back to slave systems or
error messages are generated by routers close to the victim. Such changes of the traf-
fic can be detected by combining various anomalies.

Another threat to the Internet today are worms [15,11]. This piece of software
automatically exploits security holes in operating systems or applications to infiltrate
a system and starts to propagate itself to as many other systems as possible. Today's
countermeasures to worms are signature-based detection systems scanning for well-
known worms. These systems are typically located at the victim's edge of the internet
preventing the worm propagation to a specific network. An earlier detection of such a
worm propagation is possible if the detection system is located in the network itself.
There a signature-based detection system is not applicable since it needs deep packet
inspection which is infeasible without additional special-purpose hardware. Further-
more, a signature-based detection system is not able to detect previously unknown
worms at all. To achieve a detection of unknown worms an anomaly-based detection
system can be used. Such a system also has to be deployed within the network to
ensure an optimal protection of the network. An anomaly-based detection system can
collect hints on a worm propagation for example by analyzing the ratio of error mes-
sages due to closed ports generated by scanned systems to the total number of connec-
tion requests.

In wireless networks other hazards are possible in addition to DDoS attacks and
worm propagations due to the different medium type. Since a wireless medium allows
mobility and can not guarantee any knowledge about a participating node it is much
easier to threaten the routing protocol or certain connections than it is in wired envi-
ronments. A possible attack in wireless networks is the wormhole attack [8]. By es-
tablishing a wormhole an attacker aims at attracting as much traffic as possible to a
node controlled by himself. If a proactive routing protocol is used this is achieved by
influencing routing metrics in such a way that other nodes assume the attacker in their
neighborhood due to the established tunnel. In fact however the attacker is far away.
If a reactive routing protocol is used new routes are established through the tunnel
since the tunnel enables the attacker to send a route request faster to the destination
than this is possible over normal multi-hop communication. If the attacker succeeds in
establishing a wormhole he can attack certain connections or the connectivity of great
parts of an ad hoc network by dropping packets arbitrarily. Therefore, a wormhole
attack causes an anomalous increase of traffic near the tunnel endpoints as well as an
increasing drop rate of packets which are routed over the tunnel.

Our approach to build a hazard detection system uses anomaly-based detection
functionality, e.g. stochastic anomalies, distribution anomalies or protocol anomalies.
All these anomalies give hints to a current hazard. We analyzed various hazards in
different scenarios and concluded that a system which can easily be adapted to these
scenarios would prove valuable. Such a system for anomaly-based hazard detection is
presented in this paper.

 An Extensible and Flexible System for Network Anomaly Detection 99

The paper is organized as followed: In section 2 we detail on the architecture of the
system for anomaly detection and we explain the special characteristics of our system.
Furthermore we describe two scenarios which we think the detection system can be
deployed in – a small provider network and an ad hoc network. Section 3 presents
implementation details for one of the described scenarios, the small provider network,
and an evaluation of the system for anomaly detection. Additionally we will go into
memory usage details. Section 4 gives a short summary.

1.1 Related Work

There are some existing approaches that try to detect DDoS attacks or worm propaga-
tions based on programmable networks. Some of these even use anomaly-based de-
tection mechanisms. Approaches which mainly focus on mitigation and remediation
are not discussed here. One approach of Sterne et al. [16] detects stochastic anomalies
by using a simple threshold based DDoS detection mechanism. The system consists of
three components: the DDoS flood detector, a management station which dispatches
an active program in case of a DDoS detection and routers which are active network-
ing nodes and are able to execute the active program. A drawback with this approach
is that after detecting a DDoS flood by a sudden increase in packet distribution no
further verification of the attack is done but immediately a rate limiter is installed on
the active nodes. Another approach, IBAN [4], detects worm propagations based on
active networks. Therefore, a management station distributes so called scanners on
active networking edge routers. These scanners search for a specific vulnerability
on all hosts which are connected to the edge router. This means that only known
worms can be detected. For every newly announced vulnerability a new scanner has
to be implemented first and distributed in the active network afterwards. If a vulner-
able host is detected by such a scanner the management station is informed and the
distribution of a blocker to the proper edge router has to be started manually. Thus,
this approach uses some kind of signature-based detection and does not react auto-
matically on worm propagations.

The pushback mechanism [10] is activated as soon as congestion occurs on a
router. In this case a flooding attack is assumed and the packets which are dropped on
the router due to congestion are inspected in more detail. The mechanism supposes
that the distribution of dropped packets resembles the distribution of the whole packet
stream and rate limits the highest bandwidth aggregate of packets. This is done for
further aggregates until congestion has disappeared on the outgoing links. Afterwards
rate limiters for the aggregates are installed in upstream active network routers to
reduce congestion of the incoming links. This approach has several disadvantages:
one of these is the fact that an attack can be detected not until congestion occurs on a
router and hence a detection is only possible at the edge of the network. Another
problem is the fact that no further verification is done if the rate limited aggregates
really belong to an attack. AEGIS [3] proposes the deployment of so called shields
which scan for several different anomalies and therefore, have to do a deep packet
inspection which can cause a delayed forwarding of packets if no special-purpose
hardware is used. Additionally, a commander scans for further anomalies in the ag-
gregated traffic behind the shields and tries to learn fingerprints of normal traffic to

100 T. Gamer, M. Schöller, and R. Bless

detect DDoS attacks. This procedure is likely to use much resources, primarily
memory and processor time, and therefore, causes additional costs if new hardware is
needed.

Our approach is based on the usage of a software system to achieve network anom-
aly detection. It is, however, possible to carry out some or all of the proposed detec-
tion mechanisms on network processors [13] or some other special-purpose hardware.
This causes additional costs and changes to the currently deployed infrastructure but
in some cases provides better performance of the system for network anomaly detec-
tion. In both approaches – software-based or hardware-based – resource management
is needed in order to use the available resources efficiently [7].

2 Architecture and Usage Scenarios

In subsection 2.1 we focus on the architecture of our system for network anomaly
detection. Afterwards deployment of the system in two usage scenarios – a small
provider network and an ad-hoc network – is introduced in more detail and anomalies
usable for anomaly detection are described (see subsections 2.2 and 2.3).

2.1 Architecture

We developed a system for anomaly detection that is hierarchical, anomaly-based,
extensible and flexible. A hierarchical system saves resources by splitting anomaly
detection, respectively, into several stages. Thus, the common functionality of a node
which runs an anomaly detection system is less affected by a hierarchical system than
by a system that keeps its whole functionality in one stage. A hierarchical system for
example ensures less memory usage on a router since only some easy calculations are
needed in the basic stage. A system composed of only one stage has to maintain much
more state for anomaly detection and therefore, causes a much higher memory usage.
Thus, low resource consumption due to a hierarchical design ensures applicability in
different kinds of networks. Because of this characteristic our system can even be
deployed on nodes with limited resources like routers in small provider networks or
PDAs in wireless ad-hoc networks.

Additionally, it is very easy to introduce new anomalies into the basic stage of the
detection system or new aggregate specific anomalies. This flexibility also ensures
applicability in different network scenarios. Examples for the definition of aggregates
in the basic stage and for detectable anomalies in suspicious aggregates in the second
stage are given in this section.

The attack detection system analyzes in its basic stage the packet distribution
within specific aggregates and scans for indications of an attack by detecting stochas-
tic anomalies. Therefore, the packet stream is divided on the fly into intervals with a
fixed length. Furthermore, aggregates of interest are defined for observation. The
notion aggregate in this paper refers to a set of packets with the same characteristics
and therefore, predefined aggregates are for example all TCP or all UDP packets in a
small provider network or all routing packets in an ad-hoc network. Then for each
predefined aggregate the number of packets that belong to this aggregate is counted in
every interval. An indication of an attack then is found if the observed number of

 An Extensible and Flexible System for Network Anomaly Detection 101

packets exceeds a predefined packet threshold of the aggregate. To make the system
self-adaptable to network load changes a dynamic packet threshold representing the
average packet count in this aggregate for the last couple of intervals is calculated. At
the end of every interval a check for each aggregate is performed if the observed
number of packets exceeds the packet threshold. To prevent the system from generat-
ing false positive indications and starting the next stages for deeper inspections un-
necessarily an interval threshold is defined. This interval threshold is necessary due to
the self-similarity of internet traffic [12] which can cause normal traffic to exceed the
packet threshold even though no attack is currently going on. Therefore, an indication
only is generated and further detection stages are loaded if the packet threshold is
exceeded in more consecutive intervals than the interval threshold. These detection
stages will subsequently check the suspicious aggregate in more detail.

After detecting an indication for an attack or a network problem, respectively, by
an exceeding of the threshold a second stage will be loaded. This second stage exam-
ines the suspicious aggregate in more detail by scanning for the currently defined
aggregate specific anomalies. Additionally the detection system offers the possibility
to load several consecutive stages for a more detailed analysis after detecting a sto-
chastic anomaly in the basic stage. Because the suspicious aggregate is only a subset
of the whole packet stream more detailed analysis can be done with low resource
consumption and thereby low detraction of a node's common functionality.

The advantage of our system for anomaly detection is the fact that it can be used
in very different networks and scenarios due to its flexibility. Dependent on the
underlying network aggregates can be defined for observation in the basic stage
which are likely to show some anomalies if an attack, a misconfiguration or a net-
work problem occurs. Thus, in wired networks DDoS attacks and worm distribu-
tions are attack types that are common. Due to this a priori knowledge aggregates
are defined based on transport protocols like UDP and TCP or on the network pro-
tocol ICMP. In a wireless ad-hoc network further attack types like the wormhole
attack or network problems due to a misbehaving node are possible. Thus, in ad-hoc
networks additional aggregates can be defined based on different packet types like
routing and data packets.

2.2 Attack Detection in a Small Provider Network

The first example for the deployment of our system for anomaly detection is the de-
tection of anomalies which indicate DDoS attacks or worm propagations in small
provider networks since these attacks are the most prevalent hazards in this usage
scenario. Therefore, the system scans for stochastic anomalies based on a packet and
an interval threshold to detect attacks in the basic stage as described above. After
detecting a stochastic anomaly in the basic stage the system loads two consecutive
stages. The second stage uses a distribution anomaly to make a differentiation be-
tween DDoS attacks and worm propagations. This can be achieved by analyzing the
distribution of packets into subnet prefixes based on destination addresses. Therefore,
the whole address space is divided into subnet prefixes based on the routing table of
the node deploying the detection system. If large parts of the suspicious traffic – the
number of packets by which the packet threshold was exceeded – are sent into exactly
one subnet a DDoS attack is indicated since only one victim is currently attacked. If

102 T. Gamer, M. Schöller, and R. Bless

the suspicious traffic is equally distributed to all existing subnets a worm propagation
is assumed since worms spread all over the internet. Dependent on the results of the
second stage attack type specific protocol anomalies are scanned for in the third stage
to identify either DDoS attacks or worm propagations in more detail. That means that
only DDoS specific protocol anomalies are examined in the third stage if the second
stage detected a distribution anomaly indicating a DDoS attack. Currently the anoma-
lies used in our system for network anomaly detection offer no possibility to differen-
tiate between DDoS attacks and legitimate traffic with the same characteristics, e.g.
flash-crowd events [1]. Some example protocol anomalies that can be used to detect
DDoS attacks or worm propagations in the third stage are described first. More proto-
col anomalies that can be used to detect worm propagations and other DDoS attacks
can be found in [14].

Observation of packet distribution of different aggregates

.

Differentiation
between DDoS

attacks and
worm

propagations

Aggregate1

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Basic
stage

Second
stage

Third
stage

Differentiation
between DDoS

attacks and
worm

propagations

Aggregaten

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Observation of packet distribution of different aggregates

.

Differentiation
between DDoS

attacks and
worm

propagations

Aggregate1

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Differentiation
between DDoS

attacks and
worm

propagations

Differentiation
between DDoS

attacks and
worm

propagations

Aggregate1

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Detection of
DDoS-specific
protocol
anomalies

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Basic
stage

Second
stage

Third
stage

Differentiation
between DDoS

attacks and
worm

propagations

Aggregaten

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Differentiation
between DDoS

attacks and
worm

propagations

Differentiation
between DDoS

attacks and
worm

propagations

Aggregaten

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Detection of
DDoS-specific
protocol
anomalies

Detection of
DDoS-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Detection of
worm-specific
protocol
anomalies

Fig. 1. Architecture of system for attack detection in small provider networks

Figure 1 shows the architecture of our detection system as deployed in a small pro-
vider network. It consists of three stages: The basic stage scans for stochastic anoma-
lies within the predefined aggregates like TCP packets, UDP packets, and ICMP
packets. The further stages are loaded on demand after a stochastic anomaly indicates
a suspicious aggregate. The second stage differentiates between DDoS attacks and
worm propagations by analyzing the destination address distribution in this aggregate.
Depending on this analysis protocol anomaly detection modules for either a DDoS
attack or a worm propagation are loaded.

As already mentioned the aggregates TCP packets, UDP packets, and ICMP pack-
ets are defined for attack detection in wired networks. The third stage of the detection
system is based on the fact that most of the existing DDoS attacks lead to a breach of
symmetry between incoming and outgoing packet classes which belong together by
protocol definition. A packet class here refers to a set of packets with the same char-
acteristics, for example all TCP packets with SYN flag set. Thus, a DDoS attack can
often be detected by a developing asymmetry of packet classes that belong together.

 An Extensible and Flexible System for Network Anomaly Detection 103

A SYN flooding attack for example tries to exhaust a victim's open connection
storage space by flooding the victim with TCP packets with SYN flag set. Due to the
mass of connection requests the victim can only respond to a part of all requests by
sending TCP packets with SYN and ACK flag set. All remaining requests are dropped
and the victim sends no response if storage space is already exhausted and the TCP
instance is already down. This leads to an asymmetry between incoming TCP packets
with SYN flag set and outgoing TCP packets with SYN and ACK flag set which can
be used to detect this kind of DDoS attack.

Another possible DDoS attack is the smurf attack [2], named after its exploit pro-
gram, which tries to exhaust the victim's bandwidth by flooding the victim with
ICMP echo reply messages. Therefore, ICMP echo request messages with forged
source addresses are sent to so called reflector systems. These reflector systems in
turn response with ICMP echo reply messages to the forged sender address – the
address of the victim. If an ICMP request packet is sent to the directed broadcast
address of a whole subnet all systems in the subnet will answer the request and thus,
amplify the strength of the DDoS attack. This attack leads to an asymmetry between
ICMP echo request packets sent by the victim and ICMP echo reply packets re-
ceived by the victim.

An example for a protocol anomaly that can be used for detection of a worm
propagation utilizes the fact that a worm tries to infect other hosts randomly. Addi-
tionally, most vulnerabilities a worm tries to exploit are tied to a single port number.
A worm propagation based on UDP sends packets with destination port set to the
vulnerable port number to randomly selected hosts. If some of these hosts have
patched their system already or the vulnerable port is closed anyway these systems
send an ICMP packet containing the error message “port unreachable” back to the
sender of the UDP packet. If the system or network does not exist at all an ICMP
message “host/network unreachable” is generated. Because most worms propagate
randomly the ratio of ICMP packets with these error messages will increase during a
worm propagation. This protocol anomaly can be used to verify a worm propagation
detected already by a stochastic anomaly and a distribution anomaly.

2.3 Attack Detection in an Ad-Hoc Network

The second scenario we looked into are wireless ad-hoc networks. In ad-hoc networks
the participating nodes themselves form the networking infrastructure in an ad-hoc
fashion to achieve an autonomous, mobile, wireless domain. Our system can be de-
ployed in such a network for anomaly-based detection of attacks, too. In addition to
the previous described type of attacks ad hoc specific kinds of attacks can be detected,
e.g. wormhole attacks. For this kind of attack an attacker uses a tunnel achieved for
example by a directed antenna or by a wired link to send packets over only a few hops
to an endpoint far away from the source node. Without the tunnel the packets would
have been sent over multiple hops and would have taken significantly more time to
reach the endpoint. Due to the tunnel – and thus, the “short” distance between source
and destination – the attacker can achieve that much more traffic is sent over the tun-
nel endpoints controlled by himself than normal routing would do. Thereby, the at-
tacker is able to attack certain connections or the connectivity of a great part of the

104 T. Gamer, M. Schöller, and R. Bless

network by dropping packets that are routed over the tunnel controlled by himself.
Figure 2 shows the architecture of our anomaly-based attack detection system in wire-
less ad-hoc networks.

Observation of packet distribution of different aggregates

.

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Aggregate1

Basic
stage

Second
stage

Third
stage

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Aggregaten

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

Observation of packet distribution of different aggregates

.

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Aggregate1

Basic
stage

Second
stage

Third
stage

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Differentiation
between DDoS
attacks, worm
propagations,

and wormholes

Aggregaten

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

DDoS-specific
protocol
anomalies

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

DDoS-specific
protocol
anomalies

DDoS-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Worm-specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

Wormhole-
specific
protocol
anomalies

Fig. 2. Architecture of system for attack detection in ad-hoc networks

In case of an ongoing wormhole attack an increase in the number of data packets
can be detected in the direct environment of the tunnel endpoints. This is a stochas-
tic anomaly that can be detected by the basic stage. The subsequently loaded next
stage analyzes the packets in more detail to distinguish the wormhole attack from
DDoS attacks or worm propagations. The differentiation between DDoS attacks and
worm propagations can be done by detection of a distribution anomaly described
already in subsection 2.2 but with a slight difference: the address space is divided
into host addresses instead of subnets due to the lower number of nodes in wireless
ad-hoc networks. The differentiation between these two attacks and wormhole at-
tacks can be done by another distribution anomaly. During an ongoing wormhole
attack the distribution of next hop addresses in the forwarding table tends towards
one address that is the next hop for almost all known destination addresses. To
verify a suspected wormhole attack the third stage analyzes the suspicious aggre-
gates and checks if the packet drop rate exceeds a certain threshold. This can be
realized by a protocol anomaly module which scans for asymmetries in number of
data packets to number of acknowledgement packets ratio for instance. Therefore,
the third stage gets enhanced with this mechanism if deployed in a wireless ad-hoc
network. The verification of worm propagations or DDoS attacks is done as de-
scribed in the small provider scenario.

3 Implementation and Evaluation

The described attack detection system has been implemented on the programmable
network platform FlexiNet [5] based on the Linux operating system. Thus, a service

 An Extensible and Flexible System for Network Anomaly Detection 105

module can install iptables filter rules according to the PSAMP packet selection defi-
nition [18] which allows packet selection based on packet header field matching as
well as packet sampling schemes. A selected packet is fed to the FlexiNet execution
environment via the netlink interface. To preserve the packet order of all flows a copy
of the selected packets is fed to the execution environment instead of the real packet
which is forwarded regularly on the IP layer.

The basic stage of the anomaly detection system is implemented as a service mod-
ule which is the only module loaded at system startup. This module processes the
packets selected by the installed iptables filter rules. If the basic stage detects a sto-
chastic anomaly in any aggregate by an exceeding of the packet threshold in more
consecutive intervals than the interval threshold, specialized modules for stage two
are loaded.

The basic stage monitors the number of packets within the predefined aggregates.
For the simulation of the ICMP echo reply flooding attack we used a background
traffic with an average data rate of about 3 Mbit/s. Due to the rather low bandwidth of
the background traffic the following simulation and evaluation is only a first step
towards a small provider scenario but nevertheless, we can show that the mechanisms
of our detection system work. The average ICMP traffic within this background traf-
fic was 1,8 kbit/s. The simulated attack traffic generated about 400 ICMP packets per
interval resulting in an attack data rate of about 3,6 kbit/s of additional ICMP traffic.
That is 0,12 % of the overall traffic.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

P
a
c
k
e
ts

 /
 i
n
te

rv
a
l

Interval index

Packet distribution of an ICMP echo reply flooding attack (interval 60s)

ICMP packets
ICMP threshold

Fig. 3. Packet distribution of an ICMP echo reply flooding attack

The combined traffic – background and attack traffic – was analyzed by our attack
detection system. This packet stream is shown in figure 3. Additionally the packet
threshold which is used to detect attacks in the ICMP aggregate by a stochastic anom-
aly is shown. The red line shows the observed number of ICMP packets per interval
whereas the green line shows the packet threshold. The threshold is calculated as
described in section 2.1 based on the aggregate's average packet count for the last
couple of intervals. If an indication is generated due to an exceeding of the threshold
for more consecutive intervals than the interval threshold, the threshold remains con-
stant while the attack is running. We can clearly see that the simulated attack begins
in interval 13 since the basic stage detected an indication for an attack in this interval.
The exceeding of the packet threshold in more consecutive intervals than the interval
threshold in the aggregate ICMP packets results in loading further stages of the

106 T. Gamer, M. Schöller, and R. Bless

detection system in interval 17. The second stage checks only the suspicious aggre-
gate ICMP packets for a distribution anomaly which provides a differentiation be-
tween a DDoS attack and a worm propagation. In the simulation one specific subnet
could be detected which most of the traffic is sent to by analyzing the distribution of
suspicious packets to subnets. Thus, the third stage is loaded that checks only those
packets of the suspicious aggregate that are sent into the suspicious subnet for DDoS
specific protocol anomalies. In our simulation the third stage was able to detect an
asymmetry between incoming ICMP echo reply packets and outgoing ICMP echo
request packets as described in subsection 2.2.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35

M
e
m

o
ry

 u
s
a
g
e
 [
k
B

y
te

]

Interval index

Memory usage of the System for Network Anomaly Detection

Virtual memory size

 1900

 1950

 2000

 2050

 2100

 16 18 20 22 24

M
e
m

o
ry

 u
s
a
g
e
 [
k
B

y
te

]

Interval index

Memory usage of the System for Network Anomaly Detection

Virtual memory size

 (a) Entire anomaly detection (b) A cutout

Fig. 4. Memory usage of the framework during an ongoing attack detection

Besides validating the functionality of our approach with this setup we also meas-
ured the resource consumption of our system. Figure 4a first shows the memory usage
of the detection system during the ongoing attack detection described above. The
graph shows the system's virtual memory size which is composed of code size, heap
size and stack size. The lion's share of the memory usage of about 1750 kBytes is
consumed by the execution environment itself. After loading the basic stage about
1960 kBytes virtual memory are used. In interval 17 memory usage increases due to
the loading of the further stages. Figure 4b again shows the memory usage of the
system during the attack detection phase but only intervals 15 through 25 with an
adjusted y-axis scale. During this phase about 100 kBytes additional memory are
allocated for the second stage. The third stage even needs just about 70 kBytes addi-
tional memory. After unloading the third stage in interval 22 the memory usage again
is 1960 kBytes as it was before detecting a stochastic anomaly. These measurements
show that our modular and hierarchical system needs just a small amount of virtual
memory.

4 Summary

In this paper we presented a system for network anomaly detection which is hierar-
chical, anomaly-based, extensible and flexible. These characteristics provide for the
ability to be deployed in different network environments as well as the ability to de-

 An Extensible and Flexible System for Network Anomaly Detection 107

tect various network hazards. DDoS attacks, worm propagations, and wormhole
attacks are examples of such network hazards. We showed how stochastic anomalies,
distribution anomalies, and protocol anomalies can be used to detect these and intro-
duced the architecture of our detection system in a small provider network scenario
and a wireless ad-hoc network scenario.

A simulation of an ICMP echo reply flooding attack shows that our anomaly-based
system is able to detect DDoS attacks. Furthermore we verified that our hierarchical
and modular system needs only a small amount of memory to realize the detection
functionality.

In this paper simulation and evaluation were done only with low-bandwidth back-
ground traffic. Thus, future research has to address simulations using background
traffic with a higher bandwidth to simulate a more realistic small provider network. In
this context, the detection performance – e.g. the number of false positives – has to be
examined. Furthermore, some work has to be done to achieve a differentiation be-
tween network hazards like DDoS attacks and legitimate traffic with similar charac-
teristics, e.g. flash-crowd events.

References

1. I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long. Managing flash crowds on the internet,
2003.

2. CERT. CERT Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks,
2000.http://www.cert.org/advisories/CA-1998-01.html.

3. E. Y. Chen. Aegis: An active-network-powered defense mechanism against ddos attacks.
In IWAN ’01: Proceedings of the IFIP-TC6 Third International Working Conference on
Active Networks, pages 1–15, London, UK, 2001. Springer-Verlag.

4. W. L. Cholter, P. Narasimhan, D. Sterne, R. Balupari, K. Djahandari, A. Mani, and S.
Murphy. Iban: Intrusion blocker based on active networks. dance, 00:182, 2002.

5. T. Fuhrmann, T. Harbaum, M. Schöller, and M. Zitterbart. AMnet 3.0 source code distri-
bution. Available from http://www.flexinet.de.

6. L. Garber. Denial-of-service attacks rip the internet. Computer, 33(4):12–17, 2000.
7. A. Hess, M. Schöller, G. Schäfer, A. Wolisz, and M. Zitterbart. A dynamic and flexible

Access Control and Resource Monitoring Mechanism for Active Nodes. June 2002.
8. Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole attacks in-

wireless ad hoc networks. Technical report, Department of Computer Science, Rice Uni-
versity, Dec. 2001.

9. A. Hussain, J. Heidemann, and C. Papadopoulos. A framework for classifying denial of
service attacks-extended. Technical Report ISI-TR-2003-569b, USC/Information Sciences
Institute, June 2003. (Original TR, February 2003, updated June 2003).

10. J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based defense against
DDoS attacks. In Proceedings of Network and Distributed System Security Symposium,
Catamaran Resort Hotel San Diego, California 6-8 February 2002, 1775 Wiehle Ave.,
Suite 102, Reston, VA 20190, February 2002. The Internet Society.

11. D. Moore, C. Shannon, and K. C. Claffy. Code-red: a case study on the spread and victims
of an internet worm. In Internet Measurement Workshop, pages 273–284, 2002.

12. K. Park and W.Willinger. Self-similar network traffic: An overview. In Self-Similar Net-
work Traffic and Performance Evaluation. Wiley Interscience, 1999.

108 T. Gamer, M. Schöller, and R. Bless

13. L. Ruf, A. Wagner, K. Farkas, and B. Plattner. A detection and filter system for use against
large-scale ddos attacks in the internet backbone. In Proceedings of the Sixth Annual Inter-
national Working Conference on Active Networking (IWAN 2004), October 2004.

14. S. Schober. Mechanismen zur Erkennung von Distributed-Denial-of-Service-Angriffen in
IP-Netzen. Studienarbeit am Institut für Telematik, Universität Karlsruhe (TH), December
2003.

15. C. Shannon and D. Moore. The spread of the witty worm. IEEE Security and Privacy,
2(4):46–50, 2004.

16. D. Sterne, K. Djahandari, R. Balupari, W. L. Cholter, B. Babson, B. Wilson, P. Narasim-
han, and A. Purtell. Active network based ddos defense. dance, 00:193, 2002.

17. L. Xie, P. Smith, M. Banfield, H. Leopold, J. Sterbenz, and D. Hutchison. Towards resil-
ient networks using programmable networking technologies. In Proceedings of IFIP IWAN
2005, Nov 2005.

18. T. Zseby, M. Molina, F. Raspall, and N. G. Duffield. Sampling and filtering techniques for
ip packet selection. Internet Draft, draft-ietf-psamp-sample-tech-06.txt, Work in Progress,
Internet Engineering Task Force, February 2005.

	Introduction
	Related Work

	Architecture and Usage Scenarios
	Architecture
	Attack Detection in a Small Provider Network
	Attack Detection in an Ad-Hoc Network

	Implementation and Evaluation
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

