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Abstract— To reduce energy consumption, aggregation takes
place in a wireless sensor network. All measured data is collected
and preprocessed multiple times on its way towards a data sink,
e.g., a base station. However, aggregation implies new challenges
to security: as the sink finally receives aggregated data, it is
difficult to verify not only the aggregate’s correctness, but also
the origin of the data the aggregate was computed from. In the
presence of an attacker in the network, data transmissions and
aggregation could have maliciously been modified. Yet, it turns
out that in-network aggregation and data authenticity are con-
tradictory communication properties. This research examines the
possibility of finding a trade-off between security (authenticity)
and energy-savings (aggregation). If the user is willing to accept
data’s authenticity with p ≤ 100% probability, he can still save
large amounts of energy compared to authentic communication
without aggregation.

I. INTRODUCTION

Data transport in wireless sensor networks follows a new
communication paradigm: aggregation. Sensors report their
measurements, e.g., temperature, towards a data sink. Typ-
ically, on the way to the sink, data is aggregated by ag-
gregation nodes. More precisely, aggregation nodes collect
measurements from other nodes and preprocess them before
sending the resulting aggregate further towards the data sink.
An example is shown in Figure 1. Sensor nodes a and b
measure the room temperature of room 1, e.g., at the ceiling
and at the floor. The sink, represented as a laptop in Figure
1, is, however, only interested in the mean temperature of
the whole building. Therefore, a and b send their measured
temperatures to aggregation node x, which can compute the
mean temperature of room 1 and sends this aggregate to
aggregation node z. Nodes c and d do the same for room 2:
they send their data to node y for aggregation and forwarding
to node z. Finally, node z computes the mean temperature of
the whole building and sends it to the sink.

Instead of sending all measured values to the sink with-
out any in-network preprocessing and merging, aggregation
greatly reduces the volume of transported data, the number of
data transmissions and therefore saves valuable energy.

Yet, if the measured data is very sensitive and important,
data transport has to be secured. Otherwise, an attacker could
illegally read secret measurements or modify them. It might be
even possible for an attacker to compromise nodes, i.e., to read
out all their secrets and to completely take control of them.
These compromised nodes might behave like regular nodes,
but maliciously modify important data of other nodes. For ex-
ample, a compromised aggregation node x might intentionally

compute a false aggregate and forward it to z. If both nodes
a and b would report a very high room temperature of 100°C,
e.g., because of a fire in room 1, compromised node x could
ignore this information and compute a save mean temperature
of 20°C. As a result, aggregation node z and finally the sink
would not be aware of a dangerously risen temperature in
the building. In addition, even without node compromise, an
attacker could try to masquerade as node x and inject wrong
aggregates into the network, for example to z.

b

a

c d

x

y

z
room 1

room 2

Fig. 1. Data aggregation example

Hence, security in an aggregating sensor network does
not only imply confidentiality of transported data, but also
the correctness of aggregation as well as the authenticity
or originality of participating (aggregation) nodes. Not only
direct node-to-node authenticity, e.g., between nodes a and
z, is of importance, but also end-to-end authenticity, e.g.,
between nodes a and z or a and the sink. The sink and all
intermediate aggregation nodes like z have to verify their
received aggregates for correctness and authenticity in the
presence of one or more malicious nodes.

This research examines the implications of aggregation on
(end-to-end) authenticity in the presence of multiple malicious
nodes. First of all, aggregation turns out to be contradictory
to authenticity. Therefore, a security-energy trade-off called
ESAWN, Extended Secure Aggregation for Wireless sensor
Networks, is proposed. On the one hand, the user can choose to
save more energy by aggregation, but has to accept ”weaker”
authenticity for his data. On the other hand, if the user wishes
more secure data, he has to spend more energy. Weaker
authenticity means that the user can not always expect data
to be 100% authentic, but gradually less authentic, i.e., only
p ≤ 100% authentic. ESAWN copes with multiple malicious
nodes, supports arbitrary aggregation functions, and does not
rely on any central infrastructure.

The rest of this proposal is structured as follows: After
a brief overview of related work in Section II, Section III



describes the implications of aggregating data transport on au-
thenticity in a sensor network. Section IV introduces ESAWN,
a protocol for a Security-Energy trade-off, giving an user
the ability to parameterize security and energy based on his
demands. Also, first results of ESAWN’s implementation are
presented. Section V concludes this proposal.

II. RELATED WORK

Compared to simple node-to-node authenticity, which can
be provided by any key establishment scheme like [1], real
end-to-end authenticity is a new field of research in aggregat-
ing sensor networks. Only a few papers have been published
which suffer from a lot of drawbacks: for example, schemes
based on privacy-homomorphism as [2] limit aggregation func-
tions to only trivial mathematical computations. More com-
plex aggregation is impossible with this approach, it makes
frequent use of computationally, energy expensive public-
key cryptography and has been proven to be insecure. The
same applies for [3]: only rudimentary aggregation functions,
e.g., the computation of a median, are supported. Among
other things, comparison of data, as part of a more complex
aggregation function, is impossible. As another disadvantage,
this scheme requires a secure broadcast protocol.

III. AGGREGATION VS. AUTHENTICITY

Interestingly, authenticity and aggregation are contradictory
communication paradigms: an aggregation node x takes inputs
from multiple sensor nodes, e.g., measurement A from a and
B from b, and computes an aggregate f(A,B). This aggregate
is further forwarded towards the sink. Receiving node z can
verify the (node-to-node) authenticity of aggregate f(A,B)
as coming from x easily, because it might know a pairwise
secret key shared between x and z. However, verifying the
correctness of f(A,B) and its authenticity regarding nodes
a and b is difficult. As aggregation functions f can be of
arbitrary complexity, f(A,B) might reveal absolutely no in-
formation regarding the involved data from a and b – imagine
f being a one-way hash function. Thus, it is impossible for
a node z or the sink, only receiving an aggregate, to verify
whether f(A,B) has been computed in a correct way and
whether a and b have been the responsible contributing nodes
for f(A,B).

To be able to verify f(A,B)’s correctness and authenticity,
z would need knowledge about measurements A and B as
well as about the originating nodes a and b. Obviously, if a
and b would forward their measurements to node z, z could
easily recompute f(A,B). However, this foils the general idea
of aggregation. Directly sending all measurements to z would
be same as no aggregation. The total amount of data to be
transported and the number of packets would not be reduced,
no energy would be saved due to the aggregation.

If the user wants authenticity for his transported data,
he has to spend energy for it, which in return means (at
least partial) cancellation of possible energy savings due to
aggregation. Still, there is the chance of balancing aggregation
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Fig. 2. Using witnesses in ESAWN

and authenticity by finding a security-energy trade-off. This is
the general principle behind the proposed protocol ESAWN.

IV. ESAWN

For ESAWN, the following assumptions are made:
1.) ESAWN assumes a-priori distributed pairwise secret

keys between all nodes who are going to communicate which
each other. For example, nodes a and x or a and z share
pairwise keys with each other. This can be implemented
efficiently by a key distribution protocol, e.g., [1].

2.) The attacker is assumed to be in the position to com-
promise b-percent of the whole network. For instance, if the
network consists of n = 5.000 nodes and b = 10%, the
attacker has compromised 500 nodes. Furthermore, in every
current verification step of the ESAWN-protocol, not all n
nodes, but only a subset of n′ ≤ n nodes are involved. As it
is assumed that the attacker compromises the nodes uniformly
distributed, b-percent of the protocols participating n′ nodes
are compromised. For example, if b = 10% and a total of
n′ = 10 nodes involved in ESAWN’s current verification,
there would be k = 1 compromised node ESAWN would
have to deal with.

3.) ESAWN does not provide authenticity at the same level
as one is typically used to, i.e, data is authentic or data is not
authentic, but ESAWN only assures gradual data authenticity.
Gradual authenticity means that data is authentic only within
a certain probability p ≤ 100% in the presence of b-percent
compromised nodes or k compromised nodes taking part in
the current verification step, respectively.

4.) Verification works inductively. According to Figure 1,
aggregations of aggregation nodes x and y are verified first.
After their successful verification, node z’s aggregation is
verified. So, the induction hypothesis for a current verification
is that all contributing aggregations for this aggregation have
been successfully verified and are secure in the presence of k
compromised nodes.

A. Protocol Description

To verify aggregations, ESAWN uses witnesses. Given a
situation somewhere in a sensor network, aggregation node
x aggregates measurements A from a and B from b and
sends the resulting aggregate f(A,B) to z. This is shown
in Figure 2. Note that in this case, nodes a and b could also
be aggregation nodes.

To verify x’s possibly malicious aggregation as well as a’s
and b’s authenticity in the presence of k malicious nodes,
a total of k witnesses w1, . . . , wk have to be utilized. The
witnesses are randomly chosen nodes in the direct physical
neighborhood of x. Nodes a and b send their measurements
A,B, or aggregates if they are aggregation nodes, not only



to x but also to nodes z and w1, . . . , wk. The measurements
are encrypted with pairwise keys shared between a or b and
z, w1, . . . , wk. Furthermore, aggregation node x sends its
encrypted aggregate f(A,B) not only to z, but also to all
k witnesses w1, . . . , wk (cf. Figure 2).

Now, all witnesses wi and node z can verify the correctness
of received f(A,B) by re-computing f using A and B from
nodes a and b. As all data is encrypted using pairwise keys,
data is authentically transported between any two nodes, i.e.,
node-to-node authentically. In addition, using the induction
hypothesis, data has been transported end-to-end authentically
between nodes a, b and node z, if no more than k nodes are
compromised out of {x, z, w1, . . . , wk}. No data forgery can
take place unnoticeably. Using this scheme, all aggregations
in the sensor network are verified. Finally, after verifying the
”last” aggregate, the sink can be sure about its correctness and
end-to-end authenticity in the presence of up to b-percent of
compromised nodes in the network.

It is quite obvious that these replication of a’s and b’s data
to z and all witnesses wi requires a lot of additional data
transmission, wastes energy and therefore partially levels out
energy savings due to aggregation. Therefore, the user can
selectively choose not to verify every aggregation in the net-
work all the time, but to probabilistically verify aggregations.
The user can adjust the verification rate to be p ≤ 100%.
Thus, every time an aggregate is computed, ESAWN verifies
its correctness and authenticity only with a probability of
p-percent. This greatly reduces verification energy costs by
1− p percent, but, of course, also reduces the security: If the
aggregation node, which will not be verified, is incidentally
malicious, it might unnoticeably forge its aggregate. Data is
correct and authentic only with a probability of p percent.

B. Performance Evaluation

To measure the performance and impact on energy con-
sumption of ESAWN, a first implementation has been pro-
grammed using the simulator GloMoSim.

Preliminary results can be seen in Figure 3. Varying the
total number of nodes in the network between n = 1000
and n = 10000 nodes, random sensor networks have been
created. The logarithmically scaled y-axis shows the number
of packets, i.e., data transmissions, necessary for different
ESAWN-configurations to transport all measurements starting
from the measuring sensor nodes towards the sink. However,
all curves in Figure 3 are printed in relation to a baseline,
namely the top most, horizontal curve at 100%. This curve
represents the number of packets required for a secure data
transport not using ESAWN and any aggregation. This would
be data transport, where the aggregation nodes would not do
any aggregation but only forward received data further towards
the sink. All aggregation would take place at the sink. Implicit
for the sink, this would be correct ”aggregation”. Also, as
all measurements would be encrypted for the sink from the
measuring sensor, this would be authentic data transport. All
other curves in Figure 3 are shown in relation to this baseline.
For example, an ESAWN curve with a certain y-value of 60%
at an x-value of 5.000 nodes would indicate that only 60%

of the packets are necessary compared to the no-aggregation
approach. The lowermost curve represent aggregation without
any security, i.e., k = 0, p = 0. Basically, this is the energy
savings possible using aggregation. Neither ESAWN nor any
other security protocol, can be below this curve and save
more energy. All curves in Figure 3 fall, because the relative
impact of aggregation on energy savings slowly grows with
the total number of nodes in the network. As you can see, an
ESAWN-configuration guaranteeing p = 100% authenticity
and correctness while protecting against k = 3 compromised
nodes taking part in each verification is more expensive than,
e.g., k = 2, p = 100%.
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Fig. 3. Security-Energy trade-off

Typically, the user can estimate b in advance and therefore
judge the value of k for every verification. On the one hand,
it is now possible for the user to calculate the energy costs
according to his security demand p and decide whether he
can afford these costs. On the other hand, the user can see the
security p he will get for spending a certain amount of energy
for ESAWN and decide whether this is sufficient.

V. CONCLUSION

This research discusses a contradiction between end-to-end
authenticity, data correctness and aggregation. A first protocol,
ESAWN, is proposed, which implements a security–energy
trade-off. The user can find a balance of spending a certain
amount of energy to get a certain level of security in return.
ESAWN is able to cope with multiple compromised nodes,
forgoes central infrastructures and supports arbitrary aggrega-
tion functions. Current work investigates the relation between
security of individual aggregations as described herein and the
resulting combined security of multiple concatenated aggrega-
tions, e.g., the security of measuring nodes and the sink using
multiple aggregations in between.
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