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Abstract— The early detection of uprising DDoS attacks and
worm propagations is still a challenge for today’s network
operators. An effective attack mitigation makes the detection of
such network hazards close to its sources necessary. We therefore
propose to use an in-network attack detection system which
can be installed on routers. In high-speed networks a detailed
per-packet analysis on a link’s aggregated traffic, however, is
infeasible without special-purpose hardware which causesaddi-
tional costs. Our design addresses this issue by adapting detection
granularity and analysis effort to the current stage of the attack
detection. In this paper we introduce such a granularity-adaptive
attack detection system.

I. I NTRODUCTION

Automatic detection of various kinds of hazards which,
appear more frequently in today’s networks, is still a major
challenge for network operators. A major threatening type of
such hazards are distributed denial-of-service (DDoS) attacks
like the ones against Yahoo, CNN, eBay, the million dollar
homepage, and many more which recently have attracted
public attention. With DDoS flooding attacks [1] the attacker
does not exploit a weakness of the victim’s operating system
or application but aims to overload resources like link capacity
or memory by flooding the system with more traffic than it can
process. The attack traffic is generated by many slave systems
that the attacker has compromised before.

Another threat to the Internet today are worms [2]. A worm
automatically exploits security holes in operating systems or
applications to infiltrate a system. After a successful break-in
the worm starts to propagate itself to as many other systems as
possible. One side effect of this propagation is the increasing
bandwidth consumption since more and more worm instances
try to propagate themselves to other systems.

The earlier such attacks can be detected the better the
network can be protected against them. This requires a fast
reacting detection system within the network. The detection
system has to apply realtime traffic analysis on the traffic
to be able to detect DDoS attacks and worm propagations.
In this paper, the notionpacket streamdesignates a link’s
total aggregated traffic whereas a set of packets with same
characteristics, e.g., all TCP packets, is referred to as an
aggregate.

Applying traffic analysis on a packet stream causes several
problems in high-speed networks: Due to the high bandwidth
of backbone links an inspection of all packets is infeasible
without affecting a router’s forwarding performance even with
today’s router hardware. One approach is to use a packet

selection mechanism to reduce the number of packets that
have to be inspected by the detection system. The IETF
working Group PSAMP [4] proposes various packet selectors
for the Internet, especially within the background of traffic
measurement. In [3] we already investigated the suitability
of different packet selectors in regard to an anomaly based
detection system. In order to be able to cope with the data
rate in high-speed networks anomaly detection systems haveto
usesamplingmechanisms. A sampling mechanism effectively
reduces the number of packets that are inspected, but it
also introduces estimation errors. Thus, the parameters ofthe
applied sampling mechanism have to be chosen in such a
way that the error caused by packet selection is restricted to
a predefined tolerance level. Therefore, a tradeoff has to be
found between traffic analysis scalability and the estimation
error caused by sampling.

Another problem with traffic analysis on a packet stream in
high-speed networks is that not only packet inspection butdeep
packet inspection is needed to reliably detect DDoS attacks
and worm propagations, i.e., information from higher layer
packet headers above the network layer are needed, too. This
is only possible if the number of to be deeply inspected packets
can be reduced to a feasible level that is much lower than for
simple packet inspection. In case of a system for anomaly
detection, however, the error caused by packet selection has
to be restricted to a predefined tolerance level. Thus, the
number of packets selected by a packet selector depends on the
predefined tolerance level and cannot be additionally adapted
to a feasible level for deep packet inspection. Therefore, deep
packet inspection without additional hardware also is infeasi-
ble on backbone links without affecting a router’s forwarding
performance due to the high link bandwidth.
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Fig. 1. Architecture of a hierarchical detection system using refinement



Our approach to solve this problem is to build a hierarchical
detection system which usesrefinement, i.e., detection gran-
ularity is increased with each subsequently loaded detection
stage (see figure 1). Thus, the basic stage of the detection
system performs just a coarse grained detection that only
scans for indications of an attack by using low analysis effort.
Further stages are loaded whenever an attack is assumed in
the basic stage. These further stages analyze only a part of the
whole packet stream due to the information about the assumed
attack gathered by the basic stage. Therefore, the further stages
are able to do a more fine grained hazard detection by applying
deeper packet inspection on the reduced packet stream. Thus,
the detection system gathers more detailed information about
the attack in each of the further stages by using a higher
analysis effort.

This paper details on such a granularity increasing system
for attack detection and is organized as follows: In sectionII
we detail on packet selectors suitable for an hazard detection
system and show the dependency of sampling parameters on
the observed bandwidth. Section III presents the architecture
of the hierarchical detection system and special characteristics
of the system. Additionally, a short example of a concrete
anomaly-based attack detection system is proviced. Finally,
section IV gives a short summary.

A. Related Work

There are some existing approaches that design a DDoS
attack detection system. [7] uses network processors to per-
form a deep packet inspection of all observed packets in a
backbone network. Similar, [10] uses special purpose hardware
to timestamp packets and do the analysis offline afterwards.

Another approach, the pushback mechanism [6], is activated
as soon as congestion occurs on a router and only dropped
packets are inspected. Sterne et al. [5] detects stochastic
anomalies by using a simple threshold based DDoS detec-
tion mechanism on active networking nodes, but no further
refinement is done if an attack has been detected. Bro [8] is
an open source network intrusion detection system that works
with refinement. But – unlike our approach – the refinement
has a different scope. Bro is an event-driven approach and
consists of three parts: the packet capture, the policy-neutral
event engine, and the policy layer. A problem of this approach
is that Bro creates lots of state by deep packet inspection
and semantic analysis. Finally, the MVP architecture of Cisco
Systems [9] also uses refinement for detection of DDoS attacks
but this refinement is not very flexible and is only done in two
steps, i.e., multiple stages are not possible for refinement.

II. PACKET SELECTORS

The IETF PSAMP working group defined two types of
packet selectors: filtering and sampling [4].Filtering is used
if only a particular subset of packets is of interest. In [3]
we already examined which packet selectors are suitable for
an attack detection system and decided to use the sampling
method calledsystematic count based sampling.
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Fig. 2. Example of packet selection with systematic count based sampling

This sampling method is deterministic but independent of
packet content and router state. For this method asampling
interval is defined consisting of aselection intervaland anon-
selection interval. A periodic trigger defines the beginning
of a sampling interval. The unit of the intervals iscount
based. An example of this sampling method with a sampling
interval of 5 packets, a selection interval of 2 packets, and
a non-selection interval of 3 packets is shown in figure 2.
Even though systematic count based sampling is not a random
sampling method, it is said that the example sampling method
has a sampling probability of 40 %.

TABLE I

RELATIVE DEVIATIONS OF SYSTEMATIC COUNT BASED SAMPLING

Average rate Sampling Relative Deviations
[packets / interval] parameters TCP UDP ICMP

Interval length: 6 seconds
A 125 000 4 / 100 (4 %) 0.67 % 6.18 % 14.62 %
B 102 000 6 / 100 (6 %) 0.24 % 2.36 % 13.15 %

Interval length: 0.6 seconds
A 12 500 3 / 10 (30 %) 0.47 % 4.18 % 14.75 %
B 10 200 7 / 20 (35 %) 0.55 % 4.53 % 13.40 %

In [3] we calculated a relative deviation between a sampling
run and the original packet trace to get the estimation accuracy
of a packet selector. This relative deviation is also used
in the following examination. We applied systematic count
based sampling to some network traces [11] and assumed a
predefined tolerance level for the smallest aggregate of 15 %
relative deviation. In order not to exceed this tolerance level
the sampling probability must be increased if the average
number of packets per interval – theinterval bandwidth– of
an observed packet stream is reduced. Our examination shows,
however, that in this case the absolute number of selected
packets per interval gets smaller. Table I lists the relative
deviations of the aggregates TCP packets, UDP packets, and
ICMP packets for two different packet tracesA and B. The
first two data rows used an interval length of 6 seconds which
corresponds to an interval bandwidth of about 100 – 125 k
packets per interval. We can clearly see that our predefined
tolerance level is not exceeded for any of the given aggregates.
In case of traceA a sampling probability of 4 % is used. The
next two data rows used an interval length of 0.6 seconds
which corresponds to an interval bandwidth of about 10 –
12.5 k packets per interval. We alternatively could have used
a network trace with a lower packet rate of about 10 – 12 k
packets in a 6 seconds interval instead of reducing the interval
length of the same network trace. In case of traceA a sampling



probability of 30 % is used to avoid an exceeding of the toler-
ance level. We now see that, though the sampling probability
did increase depending on the lower interval bandwidth, the
absolute number of selected packets per interval gets smaller.

III. A RCHITECTURE

We developed an anomaly-based detection system for net-
work hazards that is hierarchical and extensible. Extensibility
of the system means that new anomalies can be introduced to
different stages of the detection system easily. This ensures
that the system can be adapted to different network scenarios.

The system is designed hierarchically (see figure 1) to
incrementally increase inspection depth. Therefore, the basic
stage of our detection system analyzes the packet distribution
within specific aggregates and scans for indications of an
attack by detecting stochastic anomalies. A stochastic anomaly
is a rapid increase of packets observed in a specific aggregate.
Then for each predefined aggregate the number of packets
that belong to this aggregate is counted in every interval.
An indication of an ongoing attack is found if the observed
number of packets exceeds a predefinedpacket thresholdof
the aggregate.

Such a dynamic packet threshold is calculated representing
the average packet count in an aggregate for the last couple of
intervals to make the system self-adaptable to network load
changes. To prevent the system from generating too many
false positive indications and starting the next stages fordeeper
inspections unnecessarily aninterval thresholdis defined. This
interval threshold is necessary due to the self-similarityof
Internet traffic [12] which can cause normal traffic to exceed
the packet threshold even though no attack is currently going
on. Therefore, an indication only is generated if the packet
threshold is exceeded in more consecutive intervals than the
interval threshold defines.

Since the basic stage only has to classify which aggregate
a packet belongs to, only little information from the network
header is needed. Furthermore, checking stochastic anomalies
and adapting aggregate thresholds at the end of each interval
requires only some simple calculations. Thus, in conjunction
with the usage of a packet selector the basic stage needs only
a small amount of resources and does not need deep packet
inspection of selected packets. This leads to a coarse grained
attack detection which only can generate hints on attacks but
nevertheless is able to reduce the packet stream that has to be
analyzed in further stages.

After detecting an indication of an attack by a stochastic
anomaly a second stage is loaded. This stage – and all
subsequent loaded stages, respectively – has two possibilities
for refinement of detection granularity:

• Performing a deeper packet inspection of those packets
that preceding stages considered suspicious, or

• analyzing data collected during the preceding stage.
Inspecting only those packets deeper that the preceding stages
considered suspicious is motivated by the fact that this sus-
picious traffic is usually only a fraction of the packet stream
observed in the preceding stage. To restrict the error caused

by packet selection to the same predefined tolerance level as
in the preceding stage, the sampling probability of the packet
selector has to be increased due to the lower bandwidth of
the suspicious traffic. Nevertheless, a smaller total number
of packets has to be selected than in the preceding stage
(see subsection II) and therefore, deeper packet inspection is
feasible without affecting a router’s forwarding performance
if the packet rate of the suspicious traffic is small. In case that
the difference of the selected number of packets in the current
and the preceding stage is just marginal, a negative impact on
a router’s forwarding performance is possible if deeper packet
inspection is applied in the current stage.

The other possibility for refinement of detection granularity
is to proactively collect data in a preceding stage. This is
necessary for example if the current stage needs history data
of previous intervals that can not be easily collected by the
current stage itself. The analysis of the collected data can
then be done in the current stage based on the data from the
preceding stage. The big advantage of this proactive approach
is the separation of data collection and data analysis, i.e.,
calculations or scanning for further anomalies based on the
already collected data is performed not until a subsequent stage
is loaded and therefore, only causes additionalcomputational
overheadif it is really necessary. A drawback of this approach
is that additional memory is needed to store data for a
subsequent stage.

A. Attack detection in a small provider network

One example for the usage of the hierarchical attack
detection system described above are high-speed networks.
Another example are small provider networks that we detail
on in this section. In small provider networks the focus of
the detection system lies on detection of DDoS attacks and
worm propagations of new worms which are not well-known
yet – and therefore cannot be detected by a signature-based
detection system. Our detection system uses different kinds
of anomalies to detect ongoing DDoS attacks and worm
propagations, e.g., stochastic anomalies, distribution anomalies
or protocol anomalies. All these anomalies give hints to an
ongoing attack. Figure 3 shows the architecture of our system
that could be deployed in small provider networks and will
be explained in the following. The same architecture could be
used in high-speed networks, too.

The functionality of the basic stage was already described
in the previous section. In summary, the basic stage analyzes
the packet distribution of predefined aggregates and detects
stochastic anomaliesby using packet thresholds. If the packet
threshold of an aggregate is exceeded in more consecutive
intervals than the given interval threshold an indication of an
attack is generated and the second stage is loaded.

Our second stage analyzes additional data collected proac-
tively by the basic stage to refine detection granularity. The
detection system uses adistribution anomalyto distinguish
DDoS attacks from worm propagations. This can be achieved
by analyzing the distribution of packets into subnet prefixes
based on destination addresses. Therefore, the whole address
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Fig. 3. System architecture for attack detection in small provider networks

space is divided into subnet prefixes based on the routing table
of the node executing the detection system. If large parts ofthe
suspicious traffic – the number of packets by which the packet
threshold was exceeded – are sent into exactly one subnet a
DDoS attack is indicated since only one victim is currently
attacked. If the suspicious traffic is equally distributed to all
existing subnets a worm propagation is assumed since worms
spread more or less evenly distributed all over the Internet.
Thus, the second stage of the detection system gains more
information about the ongoing attack on basis of the data
collected by the preceding stage.

Having done all calculations on the data collected in the
basic stage a third stage is loaded. This third stage uses deeper
packet inspection for refinement of detection granularity.The
suspicious traffic is reduced by the information of the aggre-
gate in which an indication for an attack was found in the
basic stage and by the information of the attacked subnet in
case of DDoS attacks derived by the second stage. Since the
suspicious traffic observed in this third stage is reduced the
sampling probability has to be increased but nevertheless the
total number of selected packets can be reduced in most cases
according to section II. The third stage scans for attack specific
protocol anomaliesto identify either DDoS attacks or worm
propagations in more detail.

The detection of DDoS specific protocol anomalies is based
on the fact that most of the existing DDoS attacks lead to
a breach of symmetry between incoming and outgoing sub-
aggregates which belong together by protocol definition. Thus,
a SYN flooding attack for example can be detected by an
increasing asymmetry of the sub-aggregatesincoming TCP
packets with SYN flag setand outgoing TCP packets with
SYN and ACK flag setwhich arises if the victim’s TCP
instance is already down. Such a deeper packet inspection
reveals more information about the ongoing DDoS attack.
Such asymmetries as the one just described, however, can be
caused by routing asymmetries, too. This must be considered
when designing an anomaly-based detection system.

An example for a protocol anomaly that can be used for
detection of a worm propagation utilizes the fact that a worm
tries to infect other hosts usually rather randomly. A worm
propagation, therefore, sends packets to randomly selected

hosts, but if the system or network does not exist at all,
an ICMP message ”host/network unreachable” is generated.
Thus the ratio of ICMP packets with this error message will
increase during a worm propagation. Here, too, a deeper
packet inspection is done to gather more information about
the ongoing worm propagation.

In our detection system the third stage also is the final
stage but one can think of using more stages to get even more
detailed information about an ongoing attack, e.g., detecting
application specific anomalies in a fourth stage, and thus,
doing a even better refinement of detection granularity.

IV. CONCLUSION

In this paper we presented a system for in-network attack
detection which is hierarchical, anomaly-based, and extensible.
Additionally, the hierarchical character of the system enables
a granularity-adaptive detection system that uses refinement.
We showed that adapting the detection granularity and analysis
effort to the analyzed packet stream ensures that the system
can be deployed in high-speed networks without affecting
a router’s forwarding performance and without the need for
additional special-purpose hardware.

Future research has to address an adaptive sampling mech-
anism that adaptively chooses suitable sampling parameters
based on the bandwidth of the analyzed packet stream. This is
necessary to ensure a limitation of the estimation error caused
by packet sampling to a predefined tolerance level.
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