
A Special-Purpose Peer-to-Peer File Sharing System
for Mobile Ad Hoc Networks

Alexander Klemm, Christoph Lindemann, and Oliver P. Waldhorst
Department of Computer Science

University of Dortmund
August-Schmidt-Str. 12

44227 Dortmund, Germany
http://www4.cs.uni-dortmund.de/~Lindemann

Abstract — Establishing peer-to-peer (P2P) file sharing for
mobile ad hoc networks (MANET) requires the construction of a
search algorithm for transmitting queries and search results as
well as the development of a transfer protocol for downloading
files matching a query. In this paper, we present a special-
purpose system for searching and file transfer tailored to both
the characteristics of MANET and the requirements of peer-to-
peer file sharing. Our approach is based on an application layer
overlay network. As innovative feature, overlay routes are set up
on demand by the search algorithm, closely matching network
topology and transparently aggregating redundant transfer paths
on a per-file basis. The transfer protocol guarantees low
transmission overhead and a high fraction of successful
downloads by utilizing overlay routes. In a detailed ns-2
simulation study, we show that both the search algorithm and the
transfer protocol outperform off-the-shelf approaches based on a
P2P file sharing system for the wireline Internet, TCP and a
MANET routing protocol.

Keywords — Data distribution and replication, overlay
networks, content-based routing, transport in wireless networks.

I. INTRODUCTION
Mobile ad hoc networks (MANET) and peer-to-peer (P2P)

file sharing systems both exhibit a lack of fixed infrastructure
and possess no a-priori knowledge of arriving and departing
peers. Due to this common nature, P2P file sharing seems
natural and attractive to be deployed for MANET. Interesting
application scenarios include sharing traffic and weather data
by car-to-car communication in a wide-range MANET, a
groupware system for mobile e-learning applications in a local-
range MANET running on IEEE 802.11, and sharing music,
jingles, video clips etc. from mobile device to mobile device
via Bluetooth.

The operation of most P2P systems in the wireline Internet
depends on application layer connections among peers,
forming an application layer overlay network. In general, these
connections are static, i.e., a connection between two peers
remains established as long as both peers dwell in the system.
We identify the maintenance of static overlay connections as
the major performance bottleneck for deploying a P2P file
sharing system in a MANET. We find that the overlay network
topology does not reflect the underlying MANET topology,

neither in terms of connection layout nor in connection
lifetime. Whereas the overlay network topology is static in the
timescale of a node's dwell time in the system, the MANET
topology changes much more frequent due to node mobility.
This induces significant control overhead for connection
maintenance, resulting in increasing network traffic and
decreasing search accuracy.

In this paper, we present a special-purpose approach for
P2P file sharing tailored to MANET denoted Optimized
Routing Independent Overlay Network (ORION). ORION
comprises of an algorithm for construction and maintenance of
an application-layer overlay network that enables routing of all
types of messages required to operate a P2P file sharing
system, i.e., queries, responses, and file transmissions. Overlay
connections are set up on demand and maintained only as long
as necessary, closely matching the current topology of the
underlying network. ORION combines application-layer query
processing with the network layer process of route discovery,
substantially reducing control overhead and increasing search
accuracy compared to an off-the-shelf approach utilizing a P2P
system for the wireline Internet, TCP, and a state-of-the-art
MANET routing protocol. Additionally, the overlay network
enables low overhead file transfer, as well as an increasing
probability for successful file transfers compared to the off-the-
shelf approach. Performance gains with respect to the off-the-
shelf approach are illustrated in a simulation study.

ORION operation does not depend on the deployment or
support of any MANET routing protocol. Note that some data
structures and mechanisms used by ORION are also provided
by reactive MANET routing protocols, e.g., AODV [9] or DSR
[5]. I.e., ORION might induce some redundancy or even
duplication when deployed on top of such protocol. However,
we would like to point out that the basic concepts of ORION
could be combined with routing protocol functionality to avoid
duplication and make use of existing synergies.

The remainder of this paper is organized as follows. Section
II summarizes related work in the area of P2P systems. In
Sections III and IV, we present the ORION search algorithm
and transfer protocol. In Section V, the performance of ORION
is compared to an off-the-shelf approach in a simulation study.
Finally, concluding remarks are given.

II. RELATED WORK
Most published P2P file sharing systems have been

introduced for the wireline Internet. In general, a P2P file
sharing system consists of two building blocks: (1) a search
algorithm for transmitting queries and search results and (2) a
file transfer protocol for downloading files matching a query.
Whereas most file sharing systems transfer files directly
between peers using TCP connections, efficient searching is an
active area of research for wireline P2P systems.

The P2P system Gnutella [7] released by AOL in 2000
constitutes the first system implementing a fully distributed file
search. Queries are broadcasted to all peers using an
application-layer overlay network. Despite its poor
performance, Gnutella gained rapidly increasing popularity.
Several recent approaches substantially improved the
scalability of the query process by reducing the number of
messages generated to resolve a user query. Aberer et al.
propose P-Grid, a virtual binary search tree, to route query
messages to a number of nodes, which are responsible to
answer these queries [1]. Each peer in a P-Grid has to maintain
application-layer connections to two other peers. Other state-
of-the-art P2P systems like CAN [11] and Chord [12]
implement distributed hash tables. These systems allow queries
for keys, which are resolved by routing the query to a peer
storing the value matching this key. For systems with n peers, a
query can be resolved involving O(log n) (or O(nα) for α < 1)
intermediate routing hops. Each node in CAN has to maintain
connections to 2d neighbors, where d is a configuration
parameter. Chord maintains connections to O(log n) neighbors.
Thus, like Gnutella, all state-of-the-art P2P systems build
overlay networks with static connections between participating
peers. Opposed to the P2P systems mentioned above, the
approach presented in this paper does not employ static overlay
connections, but sets up connections on-demand, i.e., during
query processing. Thus, application layer routes closely match
the current network topology, significantly reducing overhead.

A first approach for establishing P2P file sharing for
MANET constitutes the protocol 7DS [10]. 7DS uses local
broadcast transmissions for sharing Web documents among
peers in order to enable online Web-browsing without
connection to the Internet. In a recent paper [8], the concept of
Passive Distributed Indexing (PDI) was introduced. Both
approaches concentrate on the search algorithm of a file
sharing system for MANET. The innovation of 7DS and PDI
lies in replacing traffic-intensive routing by exploiting peer
mobility. Opposed to 7DS and PDI, we investigate in this paper
the exploitation of forwarding and routing capabilities of a
MANET for P2P file sharing systems.

III. THE ORION SEARCH ALGORITHM
ORION provides an efficient algorithm for keyword-based file
search in MANET by combining application-layer query
processing with the network layer process of route discovery. It
combines application layer tasks with techniques known from
the Ad Hoc On Demand Distance Vector (AODV) routing
protocol [9] and the Simple Multicast and Broadcast protocol
for MANET [6].

AA BB

CC

DD

Local
Files:

1, 2, 3

Local
Files:

2, 3, 4

Local
Files:

1, 2

Q

Q

Q

Figure 1. Node A floods a QUERY message with keywords matching to
files 1 to 4

AA BB

CC

DD

Local
Files:

1, 2, 3

Local
Files:

2, 3, 4

Local
Files:

1, 2

1
2

File
Routing
Table:

1: B

2: B

Figure 2. Node B sends a RESPONSE message with identifiers of local files

File
Routing
Table:

1: B

2: B

3: B

File
Routing
Table:

3: C

AA BB

CC

DD

Local
Files:

1, 2, 3

Local
Files:

2, 3, 4

Local
Files:

1, 2

3

1
2
3

Figure 3. Node C sends a RESPONSE message with identifiers of local files,
Node B filters and forwards RESPONSE of C

File
Routing
Table:

1: B

2: B

3: B

4: B

File
Routing
Table:

3: C, D

4: D

4
AA BB

CC

DD

Local
Files:

1, 2, 3

Local
Files:

2, 3, 4

Local
Files:

1, 2 2
3
4

Figure 4. : Node D sends a RESPONSE message with identifiers of local
files; Node B filters and forwards the RESPONSE message

To implement ORION, each mobile device maintains a
local repository, consisting of a set of files stored in the local
file system. ORION provides searching capabilities for all files
in the repository. We assume that each file is associated with a
unique file identifier. Additionally, ORION maintains two
routing tables, a response routing table and a file routing table.
Similar to the routing tables used by AODV, the response

routing table is used to store the node from which a query
message has been received as next hop on the reverse path.
Thus, a node is able to return responses to the enquiring node
without explicit route discovery. The file routing table is a data
structure that stores alternative next hops for file transfers
based on the file identifier. ORION updates both the response
routing table and the file routing table during query processing.
The memory consumption for both routing tables is controlled
by limiting the maximum size and applying the Least Recently
Used (LRU) replacement policy.

For the query phase, ORION defines two types of
messages. A QUERY message contains a query string, which
consists of one or more keywords. A message of type
RESPONSE contains unique identifiers of one or more files
matching a query. To enable controlled message forwarding,
each ORION message contains a field SRC, representing the
unique identifier of the mobile device that generated the
original message. Furthermore, a field SEQ contains a
sequence number unique and strictly increasing for each
mobile device. The rollover of SEQ numbers is handled as in
[9]. When a mobile device relays a message as described
below, SRC and SEQ are preserved. Thus, storing the largest
SEQ entry received from each source device can prevent
relaying a message more than once.

To illustrate the operation of the ORION search algorithm,
we consider the four-node scenario shown in Figures 1 to 4.
There, mobile nodes are shown as circles. Nodes are connected
by a line when located in each others wireless transmission
range. The rectangles near the nodes show parts of the local
repository and the file routing table, respectively. Assume node
A issues a query matching files 1, 2, 3 and 4 (Figure 1). The
QUERY message is distributed by link-layer flooding, i.e.,
application data is piggybacked on a link-layer broadcast
message. This technique is borrowed from the simple multicast
and broadcast protocol for MANET. On its way through the
network the QUERY message sets up reverse paths to node A
in the response routing tables of all intermediate nodes. This
technique is borrowed from the route discovery process in
AODV, in which the flooded route request message sets up the
reverse route for the route reply message.

After searching the local repository, node B sends a
RESPONSE message containing the identifiers of files 1 and 2
to the next hop in node A’s direction, i.e., directly to node A
(see Figure 2). Additionally, node C sends a RESPONSE
message with the identifiers of files 1, 2, and 3 in node A’s
direction, i.e., to node B. Before forwarding the message to
node A, node B examines the contained result. File 3 is so far
unknown to node B. Therefore, node C is stored as feasible
next hop for this file in the file routing table. Node C is not
stored as next hop for files 1 and 2, because node B stores these
files itself. Therefore, node B will never request any of these
two files from node C. Instead of relaying the complete
RESPONSE message to node A, node B sends a reduced
RESPONSE message to node A containing only the new file
identifiers (see Figure 3). Similar to node C, node D answers
the query with the identifiers of matching local files with a
RESPONSE message to the next hop in the direction to node
A, i.e., to node B. As before, node B stores node D’s files in
the file routing table and sends an own additional RESPONSE

message to node A. Because node B has already forwarded
responses for files 2 and 3, the new RESPONSE message only
contains the identifier of file 4 (see Figure 4). Note that node B
not only stores node C as next hop for file 3, but also node D,
adding redundancy to the file routing table without additional
transmission cost. After the query phase, node A may chose
one of the four matching documents for download.

IV. THE ORION TRANSFER PROTOCOL

A. Basic Operation
As first building block, the ORION transfer protocol

utilizes the routes given by the file and response routing tables
for transmission of control- and data packets. Recall that the
file routing table may store several redundant paths to copies of
the same file. Due to changing network conditions, the sender
of a file might change during a file transfer. Therefore, it is
essential to keep the complete control over the transfer on the
receiver side. Thus, opposed to TCP the ORION transfer
protocol does not maintain an end-to-end semantic. For
transfer, a file is split into several blocks of equal size. Since
the maximum transfer unit of the mobile network is assumed to
be equal between all neighboring nodes, the block size can be
selected such that the data blocks fit into a single packet. The
receiver sends a DATA_REQUEST message for one of the
blocks along the path given by the file routing tables. Once the
DATA_REQUEST reaches a node storing the file in the local
repository, the node responds with a DATA_REPLY message,
containing the requested block of the file. This message is
routed back to the requesting node via the same path as the
RESPONSE message in the query phase. After receiving the
DATA_REPLY message, the receiver continues with a request
for the next block until the complete file has been transferred.
A scheduling mechanism described in Section IV.C prevents
ORION from waiting indefinitely for lost packets.

To illustrate the operation of the file transfer mechanism,
suppose node A in Figure 4 decides to download the file with
the file identifier 3. The DATA_REQUEST message for the
first part of the file is sent to the next hop in direction to the
node storing file 3, i.e., node B. Node B cannot deliver the file
itself, so it relays the request to the best-suited next hop
towards a node storing file 3. From node B’s point of view,
node C is best suited, because in the query phase node C has
responded first to the query message. Node C stores a copy of
file 3 and, thus, sends a DATA_REPLY message containing
the requested part of file 3 to the next hop in direction to node
A as identified by the response routing table. Node B relays the
DATA_REPLY message to node A. Subsequently, node A
sends a DATA_REQUEST for the next block of file 3. This
process continues until the complete file has been transferred to
node A. In this (ideal) scenario, the file transfer implicitly uses
the optimal route without any overhead for retransmissions due
to route failures.

B. Maintenance of File Transfer Routes
ORION transfers control and data packets on the best-

suited route chosen from a set of redundant routes. Selecting an
alternative route provides an efficient mechanism to locally
resolve link failures. Consider again the example in Figure 4.

Suppose the link between node B and node C fails during the
file transfer, e.g., because node C moves out of node B’s
transmission range. As soon as B recognizes the link failure, it
deletes node B in its routing tables and forwards subsequent
DATA_REQUEST messages to the now best-suited next hop
to a node possessing file 3, i.e. node D. Thus, the link failure
can locally be resolved by node B without involving other
nodes. Note that opposed to ORION, reactive MANET routing
protocols as AODV and DSR recover from link failure by
initiating a global route discovery, i.e., they will use global
failure recovery. We will show in Section V.C that local failure
recovery outperforms global recovery in terms of transmission
overhead for a P2P file sharing application.

The timely recognition of link failures is necessary to avoid
delays and unnecessary data transmissions. ORION uses
feedback from the link layer as the second building block for
an efficient file transfer. Feedback can be provided by link-
layer notification if available, e.g., as in IEEE 802.11.
Otherwise, packet receipt must be acknowledged by sending
explicit application layer packets. In the case of a send failure
on the link layer, the ORION application is notified and can
immediately chose an alternative next hop as described above.

As a further feature, the route maintenance algorithm
utilizes ROUTE_ERROR messages. These ROUTE_ERROR
messages indicate that a node could not forward a
DATA_REQUEST message, because there are no next hop
entries for the requested file left in its file routing table. To
illustrate the usage of ROUTE_ERROR messages, we refer
again to Figure 4. Suppose that node B looses the link layer
connections to both node C and node D and receives further
DATA_REQUEST messages from node A. In that case, node
B sends a ROUTE_ERROR message for file 3 to node A.
Subsequently, node A deletes node B as next hop for file 3 in
its files routing table. If node A’s file routing table contains
another next hop for file 3, subsequent DATA_REQUESTs are
sent to this node. Otherwise node A can either cancel the file
transfer or start a special search phase called re-query. Opposed
to an ordinary query, a re-query does not search for keywords,
but for a file identifier. The messages transmitted during a re-
query are equal to the messages during an ordinary query, thus
updating the routing tables for the specific file.

C. Packet Scheduling and Loss Recovery
Recall that the ORION transfer protocol as described in

Section IV.A will not continue a file transfer, if a
DATA_REQUEST or DATA_REPLY message is lost. Thus,
the ORION transfer protocol incorporates a packet scheduling

and loss-recovery mechanism as third building block. In the
remainder of this paper, we demonstrate the general
applicability of the file transfer protocol and do not elaborate
on performance and fairness optimization using sophisticated
flow control and congestion avoidance as for example provided
by the transmission control protocol, TCP [2]. Recall that TCP
tries to transmit data packets with a small delay jitter as a
continuous stream. In a file sharing application, it does not
matter in which order the blocks of a file are received, as long
as each block is received at least once. Therefore, ORION
maintains a list of pending blocks, which is initialized with all
blocks of a particular file. The blocks are requested in a round-
robin fashion, until they are successfully transmitted. To
determine the minimal request rate, the receiver keeps track of
the average round trip time, i.e., the time elapsed between
sending a DATA_REQUEST and receiving the corresponding
DATA_REPLY. The time between two successive requests is
equal to the average round trip time, unless a DATA_REPLY
is received before. That is, if a packet is lost or delayed, the
next packet will be requested at most one round trip time later.
Due to the round-robin selection of blocks, the ORION transfer
protocol re-requests a lost or delayed block after all other
pending blocks have been requested. Therefore, a delayed
block will reach the receiver with high probability before it is
requested a second time.

V. PERFORMANCE RESULTS

A. Simulation Environment
In this section, we compare the performance of both the

ORION search algorithm and the ORION transfer protocol
with an off-the-shelf approach using a P2P system for the
wired internet, TCP and a MANET routing protocol.
Performance results were obtained using the Network
Simulator ns-2 [3]. We used an IEEE 802.11 standard MAC
layer [4], and a standard physical layer using two-ray ground
propagation as radio propagation model. With a transmission
power of 17.6125 mW, the simulated mobile nodes provide a
transmission range of approximately 115m.

We assume that NodesN mobile devices move in an area of
1000 m × 1000 m according to the random waypoint mobility
model, which is commonly used to model the movement of
individual pedestrians. The speed of the device is chosen
uniformly at random from []max0, s . When a device reaches a
randomly chosen destination, it pauses for a fixed amount of
time holdT , before it continues to move to the next destination.

TABLE I. DEFAULT PARAMETERS.

Parameter Value

Transmission Range 115 m

Number of Nodes NodesN 40

Simulation Area 1000 m × 1000 m

Maximum Speed maxs 2 m/s

Rest Time holdT 50 s

TCP Timeout TCPT 60 s

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60
Number Of Nodes

Fr
ac

tio
n

of
 R

es
po

ns
es

Off-the-Shelf
ORION

Figure 5. Search accuracy vs. size

0

200

400

600

800

1000

1200

1400

0 20 40 60
Number of Nodes

T
ra

ns
m

itt
ed

 V
ol

um
e

(M
B

)

Off-the-Shelf
ORION

Figure 6. Protocol overhead vs. size

If not stated otherwise, all fixed parameters are set according to
Table 1. We calculated 99% confidence intervals for the
simulation results and indicate them as bars for each data point
in a performance curve.

B. Search Performance
To illustrate the effectiveness of ORION’s search

algorithm, we compare its performance with an off-the-shelf
approach utilizing a P2P system for the wireline Internet, TCP,
and a state-of-the-art MANET routing protocol. Since almost
all known P2P file sharing systems use static connections to
build an overlay network we consider Gnutella [7] as example
for such P2P systems. For the off-the-shelf approach, we
employ TCP-SACK as transport layer protocol on top of the
MANET routing protocol Dynamic Source Routing (DSR, [5]).
We label corresponding curves as ORION and Off-the-Shelf,
respectively.

An important performance measure from the user’s point of
view is the quality of the results received in response to a sent
query. Therefore, we consider search accuracy, i.e., the fraction
of received unique files in relation to the number of all files
matching a query. In Figure 5, we plot search accuracy as a
function of number of nodes participating in the mobile file
sharing application. We find that search accuracy for both
applications increase with the number of nodes. This is clearly
due to the increasing connectivity. However, the off-the-shelf
approach has searching performance worse than ORION and
also shows decreasing search accuracy for more than 40 mobile
nodes.

To evaluate the overhead generated by both approaches, we
investigate the accumulated volume of transmitted messages
for an increasing number of nodes. Figure 6 shows, that
ORION outperforms the off-the-shelf approach by more than
one order of magnitude for a MANET with a large number of
nodes. we conclude that P2P file sharing systems based on a
static application-layer connections are not applicable even for
environments with few nodes, while ORION easily scales to
large scenarios.

Figure 7 gives insight in the composition of messages
contributing to the overall message volume generated by both
approaches. Message volume in the off-the-shelf approach is
dominated by control traffic from MAC, routing and transport
layers. Only 5% of the overall traffic is used for exchange of
query and response messages (payload), which should be the
main purpose of the search algorithm in a P2P application. In
contrast, the fraction of this type of traffic exceeds 79% of the
total message volume for ORION. Since the amount of payload
is similar in both approaches, this experiment clearly shows

that the main deficiency of the off-the-shelf approach is not the
inefficient query mechanism but the overhead of maintaining
static overlay connections. Therefore we argue that the results
obtained with the off-the-shelf-approach are also valid for any
P2P file sharing systems using static overlay connections, not
only for Gnutella. We conclude from Figure 7 that the off-the-
shelf approach fails to make efficient use of network
bandwidth, while ORION utilizes network resources
effectively.

C. Transfer Performance
For evaluating the performance of the ORION transfer

protocol, we compare it with an off-the-shelf file transfer
approach using TCP as transport layer protocol on top of DSR
and AODV, respectively. We found that TCP throughput is
roughly the same for DSR and AODV. Therefore, in this
section we present the performance results for TCP with DSR
and omit corresponding results for AODV. We refer to the
considered transfer protocols as ORION and Off-the-Shelf,
respectively. For each point in the performance curves, we
performed 20,000 queries and successive file transfers. Each
transferred file has a size of 3 MB, reflecting the average size
of an MP3 file. The degree of replication is 0.1 in all
experiments, i.e., 10% of the participating nodes store copies of
a given document.

In a P2P file sharing system, an important feature for
achieving user satisfaction is the number of successful file
transfers. We analyze this performance measure in Figure 8.
For the off-the-shelf approach, a download is considered as
“failed”, if none of the nodes responding to the original query
remains reachable. In the case of ORION, a download is
considered as “failed” when the inquiring node runs out of
alternative paths after a single re-query. Note that ORION is
able to implicitly discover file holders that are unreachable
when issuing the original query. Figure 8 shows that due to low
connectivity in systems with a low number of nodes, both
approaches are able to complete only a small number of file
transfers. For a growing number of nodes, ORION is able to
complete up to 40% more transfers, based on the file-oriented
re-query process. We conclude that ORION can provide high
user satisfaction by completing a large fraction of file transfers.

One of the most important performance measures for data-
intensive applications running on mobile devices is the
transmitted data volume, due to scarce bandwidth and energy
resources. In a P2P file sharing application, a trivial lower
bound for the volume generated by a file transfer is the size of
the file. This bound holds under the assumption that the

0

50

100

150

200

250

300

Off-the-Shelf ORION

MAC & other

Connection Control
Payload

M
es

sa
ge

 V
ol

um
e

(M
B

)

643.1

27.5

Figure 7. Breakdown to message types

0
10
20
30
40
50
60
70
80

0 20 40 60
Number of Nodes

Su
cc

es
sf

ul
 T

ra
ns

fe
rs

 (%
)

Off-the-Shelf
ORION

Figure 8. Successful transfers vs. size

0

50

100

150

200

250

0 20 40 60
Number of Nodes

O
ve

rh
ea

d
(%

)

Off-the-Shelf
ORION

Figure 9. Overhead vs. size

network route used for the transfer spans only a single hop and
that there is no overhead for packet headers, flow control and
packet retransmissions. However, the transmission might
experience significant overhead due to network routes
spanning more than one hop as well as due to retransmissions
of lost or delayed packets.

We investigate the average overhead for a successful file
transmission in percent of the total file size of 3 MB. Figure 9
plots the overhead as a function of the number of nodes. For
few nodes, in most cases files are transferred between direct
neighboring nodes. In this case, most overhead is control
overhead. We find that the off-the-shelf approach transmits
more than twice the file size over the wireless medium. As
shown by an analysis of the ns-2 trace files, the main reason for
this are retransmissions of packets delayed by the route
maintenance of DSR, as well as longer transfer routes. Route
length increases if a direct connection between the sending and
receiving node fails, while a longer route via an intermediate
node exists. Recall that in this case, DSR will recover from
route failure globally, using the longer route. The scheduling
algorithm of ORION reduces the amount of retransmissions of
delayed packets. Furthermore, in case of route failure, ORION
will resume the transmission from another nearby node using
the file routing table. These features lead to a total overhead
below 50% for few nodes. For a growing number of nodes,
overhead increases for both the off-the-shelf approach and
ORION, as the average length of a network route increases.
However, ORION stays superior to the off-the-shelf for the
same reasons. From Figure 9 we conclude that ORION
provides a file transfer mechanism that is highly efficient in
bandwidth usage.

In further experiments, we compared the throughput of the
ORION transfer protocol to the off-the-shelf approach. The
experiments show that the throughput is comparable for both
approaches. Note that a congestion control mechanism for the
ORION transfer protocol is subject to future work, thus we did
not consider cross traffic in our experiments. Due to space
limitations, we do not discuss the results in detail.

VI. CONCLUSION
In this paper, we presented the Optimized Routing

Independent Overlay Network (ORION), a special-purpose
approach for P2P file sharing tailored to MANET. ORION is
completely implemented on the application layer and does not
depend on support of a MANET routing protocol. As building
blocks, ORION comprises of an algorithm for construction and
maintenance of an application-layer overlay network that
enables routing of all types of messages required to operate a
P2P file sharing system, i.e., queries, responses, and file
transmissions. It combines application-layer query processing
and overlay network construction with the network layer
process of route discovery and transparently aggregates
redundant transfer routes on a per-file basis. The ORION

transfer protocol enables efficient file transfers on top of the
overlay connections established by the search algorithm.

In a detailed ns-2 simulation study, we illustrated the
performance gains of ORION compared to an off-the-shelf
approach based on a P2P file sharing system for the wireline
Internet, TCP and a MANET routing protocol. We found that
ORION significantly increases search accuracy and reduces
overhead for searching. Furthermore, ORION enables more
reliable file transfers with lower overhead compared to the off-
the-shelf approach.

In future work, we will combine the content based routing
facilities provided by ORION with reactive MANET routing
protocols in order to use synergies in mechanisms and data
structures. Closely integrated with the functionality of the
network layer, the key concepts of ORION can provide a
general-purpose foundation not only for P2P file sharing but
also for many other MANET based P2P applications.
Furthermore, a congestion control mechanism for the ORION
transfer protocol will be developed to guarantee fairness with
respect to other transfers.

REFERENCES
[1] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt, Improving Data

Access in P2P Systems, IEEE Internet Computing 6(1), 58-67, 2002.
[2] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control, IETF

RFC 2581, 1999.
[3] K. Fall and K. Varadhan (editors), The ns-2 manual, Technical Report,

The VINT Project, UC Berkeley, LBL, and Xerox PARC, 2002.
[4] IEEE Computer Society LAN MAN Standards Committee, Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Standard 802.11-1997, New York, NY, 1997.

[5] D. Johnson, D. Maltz, Y. Hu, and J. Jetcheva, The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt, IETF
Internet Draft (work in progress), February 2002.

[6] J. Jetcheva, Y. Hu, D. Maltz, and D. Johnson, A Simple Protocol for
Multicast and Broadcast in Mobile Ad Hoc Networks, http://
www.ietf.org/proceedings/01dec/I-D/draft-ietf-manet-simple-mbcast-
01.txt, IETF Internet Draft (work in progress), July 2001.

[7] T. Klingberg and R. Manfredi, Gnutella 0.6, Draft, 2002.
http://groups.yahoo.com/group/the_gdf/files/
Development/GnutellaProtocol-v0.6-200206draft.txt

[8] C. Lindemann and O. Waldhorst, A Distributed Search Service for Peer-
to-Peer File Sharing in Mobile Applications. Proc. 2nd IEEE Conf. on
Peer-to-Peer Computing (P2P 2002), Linköping, Sweden, 71-83, 2002.

[9] C. Perkins, E. Royer, and S. Das, Ad hoc On-Demand Distance Vector
(AODV) Routing, IETF RFC 3561, 2003.

[10] M. Papadopouli and H. Schulzrinne, Effects of Power Conservation,
Wireless Coverage and Cooperation on Data Dissemination among
Mobile Devices, Proc. ACM Symp. on Mobile Ad Hoc Networking and
Computing (MOBIHOC 2001), Long Beach, CA, 117-127, 2001.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
Scalable Content-Addressable Network, Proc. ACM SIGCOMM Conf.
2001, San Diego, CA, 161-172, 2001.

[12] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and Balakrishnan, H,
Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications, Proc. ACM SIGCOMM Conf. 2001, San Diego, CA, 149-
160, 2001.

