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Abstract — Establishing peer-to-peer (P2P) file sharing for 
mobile ad hoc networks (MANET) requires the construction of a 
search algorithm for transmitting queries and search results as 
well as the development of a transfer protocol for downloading 
files matching a query. In this paper, we present a special-
purpose system for searching and file transfer tailored to both 
the characteristics of MANET and the requirements of peer-to-
peer file sharing. Our approach is based on an application layer 
overlay network. As innovative feature, overlay routes are set up 
on demand by the search algorithm, closely matching network 
topology and transparently aggregating redundant transfer paths 
on a per-file basis. The transfer protocol guarantees low 
transmission overhead and a high fraction of successful 
downloads by utilizing overlay routes. In a detailed ns-2 
simulation study, we show that both the search algorithm and the 
transfer protocol outperform off-the-shelf approaches based on a 
P2P file sharing system for the wireline Internet, TCP and a 
MANET routing protocol. 

Keywords — Data distribution and replication, overlay 
networks, content-based routing, transport in wireless networks. 

I.  INTRODUCTION 
Mobile ad hoc networks (MANET) and peer-to-peer (P2P) 

file sharing systems both exhibit a lack of fixed infrastructure 
and possess no a-priori knowledge of arriving and departing 
peers. Due to this common nature, P2P file sharing seems 
natural and attractive to be deployed for MANET. Interesting 
application scenarios include sharing traffic and weather data 
by car-to-car communication in a wide-range MANET, a 
groupware system for mobile e-learning applications in a local-
range MANET running on IEEE 802.11, and sharing music, 
jingles, video clips etc. from mobile device to mobile device 
via Bluetooth. 

The operation of most P2P systems in the wireline Internet 
depends on application layer connections among peers, 
forming an application layer overlay network. In general, these 
connections are static, i.e., a connection between two peers 
remains established as long as both peers dwell in the system. 
We identify the maintenance of static overlay connections as 
the major performance bottleneck for deploying a P2P file 
sharing system in a MANET. We find that the overlay network 
topology does not reflect the underlying MANET topology, 

neither in terms of connection layout nor in connection 
lifetime. Whereas the overlay network topology is static in the 
timescale of a node's dwell time in the system, the MANET 
topology changes much more frequent due to node mobility. 
This induces significant control overhead for connection 
maintenance, resulting in increasing network traffic and 
decreasing search accuracy.  

In this paper, we present a special-purpose approach for 
P2P file sharing tailored to MANET denoted Optimized 
Routing Independent Overlay Network (ORION). ORION 
comprises of an algorithm for construction and maintenance of 
an application-layer overlay network that enables routing of all 
types of messages required to operate a P2P file sharing 
system, i.e., queries, responses, and file transmissions. Overlay 
connections are set up on demand and maintained only as long 
as necessary, closely matching the current topology of the 
underlying network. ORION combines application-layer query 
processing with the network layer process of route discovery, 
substantially reducing control overhead and increasing search 
accuracy compared to an off-the-shelf approach utilizing a P2P 
system for the wireline Internet, TCP, and a state-of-the-art 
MANET routing protocol. Additionally, the overlay network 
enables low overhead file transfer, as well as an increasing 
probability for successful file transfers compared to the off-the-
shelf approach. Performance gains with respect to the off-the-
shelf approach are illustrated in a simulation study. 

ORION operation does not depend on the deployment or 
support of any MANET routing protocol. Note that some data 
structures and mechanisms used by ORION are also provided 
by reactive MANET routing protocols, e.g., AODV [9] or DSR 
[5]. I.e., ORION might induce some redundancy or even 
duplication when deployed on top of such protocol. However, 
we would like to point out that the basic concepts of ORION 
could be combined with routing protocol functionality to avoid 
duplication and make use of existing synergies. 

The remainder of this paper is organized as follows. Section 
II summarizes related work in the area of P2P systems. In 
Sections III and IV, we present the ORION search algorithm 
and transfer protocol. In Section V, the performance of ORION 
is compared to an off-the-shelf approach in a simulation study. 
Finally, concluding remarks are given. 



II. RELATED WORK 
Most published P2P file sharing systems have been 

introduced for the wireline Internet. In general, a P2P file 
sharing system consists of two building blocks: (1) a search 
algorithm for transmitting queries and search results and (2) a 
file transfer protocol for downloading files matching a query. 
Whereas most file sharing systems transfer files directly 
between peers using TCP connections, efficient searching is an 
active area of research for wireline P2P systems. 

The P2P system Gnutella [7] released by AOL in 2000 
constitutes the first system implementing a fully distributed file 
search. Queries are broadcasted to all peers using an 
application-layer overlay network. Despite its poor 
performance, Gnutella gained rapidly increasing popularity. 
Several recent approaches substantially improved the 
scalability of the query process by reducing the number of 
messages generated to resolve a user query. Aberer et al. 
propose P-Grid, a virtual binary search tree, to route query 
messages to a number of nodes, which are responsible to 
answer these queries [1]. Each peer in a P-Grid has to maintain 
application-layer connections to two other peers. Other state-
of-the-art P2P systems like CAN [11] and Chord [12] 
implement distributed hash tables. These systems allow queries 
for keys, which are resolved by routing the query to a peer 
storing the value matching this key. For systems with n peers, a 
query can be resolved involving O(log n) (or O(nα) for α < 1) 
intermediate routing hops. Each node in CAN has to maintain 
connections to 2d neighbors, where d is a configuration 
parameter. Chord maintains connections to O(log n) neighbors. 
Thus, like Gnutella, all state-of-the-art P2P systems build 
overlay networks with static connections between participating 
peers. Opposed to the P2P systems mentioned above, the 
approach presented in this paper does not employ static overlay 
connections, but sets up connections on-demand, i.e., during 
query processing. Thus, application layer routes closely match 
the current network topology, significantly reducing overhead. 

A first approach for establishing P2P file sharing for 
MANET constitutes the protocol 7DS [10]. 7DS uses local 
broadcast transmissions for sharing Web documents among 
peers in order to enable online Web-browsing without 
connection to the Internet. In a recent paper [8], the concept of 
Passive Distributed Indexing (PDI) was introduced. Both 
approaches concentrate on the search algorithm of a file 
sharing system for MANET. The innovation of 7DS and PDI 
lies in replacing traffic-intensive routing by exploiting peer 
mobility. Opposed to 7DS and PDI, we investigate in this paper 
the exploitation of forwarding and routing capabilities of a 
MANET for P2P file sharing systems. 

III. THE ORION SEARCH ALGORITHM 
ORION provides an efficient algorithm for keyword-based file 
search in MANET by combining application-layer query 
processing with the network layer process of route discovery. It 
combines application layer tasks with techniques known from 
the Ad Hoc On Demand Distance Vector (AODV) routing 
protocol [9] and the Simple Multicast and Broadcast protocol 
for MANET [6]. 
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Figure 1.  Node A floods a QUERY message with keywords matching to 
files 1 to 4 
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Figure 2.  Node B sends a RESPONSE message with identifiers of local files 
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Figure 3.  Node C sends a RESPONSE message with identifiers of local files, 
Node B filters and forwards RESPONSE of C 
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Figure 4.  : Node D sends a RESPONSE message with identifiers of local 
files; Node B filters and forwards the RESPONSE message 

To implement ORION, each mobile device maintains a 
local repository, consisting of a set of files stored in the local 
file system. ORION provides searching capabilities for all files 
in the repository. We assume that each file is associated with a 
unique file identifier. Additionally, ORION maintains two 
routing tables, a response routing table and a file routing table. 
Similar to the routing tables used by AODV, the response 



routing table is used to store the node from which a query 
message has been received as next hop on the reverse path. 
Thus, a node is able to return responses to the enquiring node 
without explicit route discovery. The file routing table is a data 
structure that stores alternative next hops for file transfers 
based on the file identifier. ORION updates both the response 
routing table and the file routing table during query processing. 
The memory consumption for both routing tables is controlled 
by limiting the maximum size and applying the Least Recently 
Used (LRU) replacement policy. 

For the query phase, ORION defines two types of 
messages. A QUERY message contains a query string, which 
consists of one or more keywords. A message of type 
RESPONSE contains unique identifiers of one or more files 
matching a query. To enable controlled message forwarding, 
each ORION message contains a field SRC, representing the 
unique identifier of the mobile device that generated the 
original message. Furthermore, a field SEQ contains a 
sequence number unique and strictly increasing for each 
mobile device. The rollover of SEQ numbers is handled as in 
[9]. When a mobile device relays a message as described 
below, SRC and SEQ are preserved. Thus, storing the largest 
SEQ entry received from each source device can prevent 
relaying a message more than once. 

To illustrate the operation of the ORION search algorithm, 
we consider the four-node scenario shown in Figures 1 to 4. 
There, mobile nodes are shown as circles. Nodes are connected 
by a line when located in each others wireless transmission 
range. The rectangles near the nodes show parts of the local 
repository and the file routing table, respectively. Assume node 
A issues a query matching files 1, 2, 3 and 4 (Figure 1). The 
QUERY message is distributed by link-layer flooding, i.e., 
application data is piggybacked on a link-layer broadcast 
message. This technique is borrowed from the simple multicast 
and broadcast protocol for MANET. On its way through the 
network the QUERY message sets up reverse paths to node A 
in the response routing tables of all intermediate nodes. This 
technique is borrowed from the route discovery process in 
AODV, in which the flooded route request message sets up the 
reverse route for the route reply message. 

After searching the local repository, node B sends a 
RESPONSE message containing the identifiers of files 1 and 2 
to the next hop in node A’s direction, i.e., directly to node A 
(see Figure 2). Additionally, node C sends a RESPONSE 
message with the identifiers of files 1, 2, and 3 in node A’s 
direction, i.e., to node B. Before forwarding the message to 
node A, node B examines the contained result. File 3 is so far 
unknown to node B. Therefore, node C is stored as feasible 
next hop for this file in the file routing table. Node C is not 
stored as next hop for files 1 and 2, because node B stores these 
files itself. Therefore, node B will never request any of these 
two files from node C. Instead of relaying the complete 
RESPONSE message to node A, node B sends a reduced 
RESPONSE message to node A containing only the new file 
identifiers (see Figure 3). Similar to node C, node D answers 
the query with the identifiers of matching local files with a 
RESPONSE message to the next hop in the direction to node 
A, i.e., to node B. As before, node B stores node D’s files in 
the file routing table and sends an own additional RESPONSE 

message to node A. Because node B has already forwarded 
responses for files 2 and 3, the new RESPONSE message only 
contains the identifier of file 4 (see Figure 4). Note that node B 
not only stores node C as next hop for file 3, but also node D, 
adding redundancy to the file routing table without additional 
transmission cost. After the query phase, node A may chose 
one of the four matching documents for download. 

IV. THE ORION TRANSFER PROTOCOL 

A. Basic Operation 
As first building block, the ORION transfer protocol 

utilizes the routes given by the file and response routing tables 
for transmission of control- and data packets. Recall that the 
file routing table may store several redundant paths to copies of 
the same file. Due to changing network conditions, the sender 
of a file might change during a file transfer. Therefore, it is 
essential to keep the complete control over the transfer on the 
receiver side. Thus, opposed to TCP the ORION transfer 
protocol does not maintain an end-to-end semantic. For 
transfer, a file is split into several blocks of equal size. Since 
the maximum transfer unit of the mobile network is assumed to 
be equal between all neighboring nodes, the block size can be 
selected such that the data blocks fit into a single packet. The 
receiver sends a DATA_REQUEST message for one of the 
blocks along the path given by the file routing tables. Once the 
DATA_REQUEST reaches a node storing the file in the local 
repository, the node responds with a DATA_REPLY message, 
containing the requested block of the file. This message is 
routed back to the requesting node via the same path as the 
RESPONSE message in the query phase. After receiving the 
DATA_REPLY message, the receiver continues with a request 
for the next block until the complete file has been transferred. 
A scheduling mechanism described in Section IV.C prevents 
ORION from waiting indefinitely for lost packets. 

To illustrate the operation of the file transfer mechanism, 
suppose node A in Figure 4 decides to download the file with 
the file identifier 3. The DATA_REQUEST message for the 
first part of the file is sent to the next hop in direction to the 
node storing file 3, i.e., node B. Node B cannot deliver the file 
itself, so it relays the request to the best-suited next hop 
towards a node storing file 3. From node B’s point of view, 
node C is best suited, because in the query phase node C has 
responded first to the query message. Node C stores a copy of 
file 3 and, thus, sends a DATA_REPLY message containing 
the requested part of file 3 to the next hop in direction to node 
A as identified by the response routing table. Node B relays the 
DATA_REPLY message to node A. Subsequently, node A 
sends a DATA_REQUEST for the next block of file 3. This 
process continues until the complete file has been transferred to 
node A. In this (ideal) scenario, the file transfer implicitly uses 
the optimal route without any overhead for retransmissions due 
to route failures. 

B. Maintenance of File Transfer Routes 
ORION transfers control and data packets on the best-

suited route chosen from a set of redundant routes. Selecting an 
alternative route provides an efficient mechanism to locally 
resolve link failures. Consider again the example in Figure 4. 



Suppose the link between node B and node C fails during the 
file transfer, e.g., because node C moves out of node B’s 
transmission range. As soon as B recognizes the link failure, it 
deletes node B in its routing tables and forwards subsequent 
DATA_REQUEST messages to the now best-suited next hop 
to a node possessing file 3, i.e. node D. Thus, the link failure 
can locally be resolved by node B without involving other 
nodes. Note that opposed to ORION, reactive MANET routing 
protocols as AODV and DSR recover from link failure by 
initiating a global route discovery, i.e., they will use global 
failure recovery. We will show in Section V.C that local failure 
recovery outperforms global recovery in terms of transmission 
overhead for a P2P file sharing application. 

The timely recognition of link failures is necessary to avoid 
delays and unnecessary data transmissions. ORION uses 
feedback from the link layer as the second building block for 
an efficient file transfer. Feedback can be provided by link-
layer notification if available, e.g., as in IEEE 802.11. 
Otherwise, packet receipt must be acknowledged by sending 
explicit application layer packets. In the case of a send failure 
on the link layer, the ORION application is notified and can 
immediately chose an alternative next hop as described above. 

As a further feature, the route maintenance algorithm 
utilizes ROUTE_ERROR messages. These ROUTE_ERROR 
messages indicate that a node could not forward a 
DATA_REQUEST message, because there are no next hop 
entries for the requested file left in its file routing table. To 
illustrate the usage of ROUTE_ERROR messages, we refer 
again to Figure 4. Suppose that node B looses the link layer 
connections to both node C and node D and receives further 
DATA_REQUEST messages from node A. In that case, node 
B sends a ROUTE_ERROR message for file 3 to node A. 
Subsequently, node A deletes node B as next hop for file 3 in 
its files routing table. If node A’s file routing table contains 
another next hop for file 3, subsequent DATA_REQUESTs are 
sent to this node. Otherwise node A can either cancel the file 
transfer or start a special search phase called re-query. Opposed 
to an ordinary query, a re-query does not search for keywords, 
but for a file identifier. The messages transmitted during a re-
query are equal to the messages during an ordinary query, thus 
updating the routing tables for the specific file. 

C. Packet Scheduling and Loss Recovery 
Recall that the ORION transfer protocol as described in 

Section IV.A will not continue a file transfer, if a 
DATA_REQUEST or DATA_REPLY message is lost. Thus, 
the ORION transfer protocol incorporates a packet scheduling 

and loss-recovery mechanism as third building block. In the 
remainder of this paper, we demonstrate the general 
applicability of the file transfer protocol and do not elaborate 
on performance and fairness optimization using sophisticated 
flow control and congestion avoidance as for example provided 
by the transmission control protocol, TCP [2]. Recall that TCP 
tries to transmit data packets with a small delay jitter as a 
continuous stream. In a file sharing application, it does not 
matter in which order the blocks of a file are received, as long 
as each block is received at least once. Therefore, ORION 
maintains a list of pending blocks, which is initialized with all 
blocks of a particular file. The blocks are requested in a round-
robin fashion, until they are successfully transmitted. To 
determine the minimal request rate, the receiver keeps track of 
the average round trip time, i.e., the time elapsed between 
sending a DATA_REQUEST and receiving the corresponding 
DATA_REPLY. The time between two successive requests is 
equal to the average round trip time, unless a DATA_REPLY 
is received before. That is, if a packet is lost or delayed, the 
next packet will be requested at most one round trip time later. 
Due to the round-robin selection of blocks, the ORION transfer 
protocol re-requests a lost or delayed block after all other 
pending blocks have been requested. Therefore, a delayed 
block will reach the receiver with high probability before it is 
requested a second time. 

V. PERFORMANCE RESULTS 

A. Simulation Environment 
In this section, we compare the performance of both the 

ORION search algorithm and the ORION transfer protocol 
with an off-the-shelf approach using a P2P system for the 
wired internet, TCP and a MANET routing protocol. 
Performance results were obtained using the Network 
Simulator ns-2 [3]. We used an IEEE 802.11 standard MAC 
layer [4], and a standard physical layer using two-ray ground 
propagation as radio propagation model. With a transmission 
power of 17.6125 mW, the simulated mobile nodes provide a 
transmission range of approximately 115m. 

We assume that NodesN  mobile devices move in an area of 
1000 m × 1000 m according to the random waypoint mobility 
model, which is commonly used to model the movement of 
individual pedestrians. The speed of the device is chosen 
uniformly at random from [ ]max0, s . When a device reaches a 
randomly chosen destination, it pauses for a fixed amount of 
time holdT , before it continues to move to the next destination. 
 

TABLE I.  DEFAULT PARAMETERS. 

Parameter Value 

Transmission Range 115 m 

Number of Nodes NodesN  40 

Simulation Area 1000 m × 1000 m 

Maximum Speed maxs  2 m/s 

Rest Time holdT  50 s 

TCP Timeout TCPT  60 s 
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Figure 5.  Search accuracy vs. size 
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Figure 6.  Protocol overhead vs. size 



If not stated otherwise, all fixed parameters are set according to 
Table 1. We calculated 99% confidence intervals for the 
simulation results and indicate them as bars for each data point 
in a performance curve. 

B. Search Performance 
To illustrate the effectiveness of ORION’s search 

algorithm, we compare its performance with an off-the-shelf 
approach utilizing a P2P system for the wireline Internet, TCP, 
and a state-of-the-art MANET routing protocol. Since almost 
all known P2P file sharing systems use static connections to 
build an overlay network we consider Gnutella [7] as example 
for such P2P systems. For the off-the-shelf approach, we 
employ TCP-SACK as transport layer protocol on top of the 
MANET routing protocol Dynamic Source Routing (DSR, [5]). 
We label corresponding curves as ORION and Off-the-Shelf, 
respectively.  

An important performance measure from the user’s point of 
view is the quality of the results received in response to a sent 
query. Therefore, we consider search accuracy, i.e., the fraction 
of received unique files in relation to the number of all files 
matching a query. In Figure 5, we plot search accuracy as a 
function of number of nodes participating in the mobile file 
sharing application. We find that search accuracy for both 
applications increase with the number of nodes. This is clearly 
due to the increasing connectivity. However, the off-the-shelf 
approach has searching performance worse than ORION and 
also shows decreasing search accuracy for more than 40 mobile 
nodes. 

To evaluate the overhead generated by both approaches, we 
investigate the accumulated volume of transmitted messages 
for an increasing number of nodes. Figure 6 shows, that 
ORION outperforms the off-the-shelf approach by more than 
one order of magnitude for a MANET with a large number of 
nodes. we conclude that P2P file sharing systems based on a 
static application-layer connections are not applicable even for 
environments with few nodes, while ORION easily scales to 
large scenarios. 

Figure 7 gives insight in the composition of messages 
contributing to the overall message volume generated by both 
approaches. Message volume in the off-the-shelf approach is 
dominated by control traffic from MAC, routing and transport 
layers. Only 5% of the overall traffic is used for exchange of 
query and response messages (payload), which should be the 
main purpose of the search algorithm in a P2P application. In 
contrast, the fraction of this type of traffic exceeds 79% of the 
total message volume for ORION. Since the amount of payload 
is similar in both approaches, this experiment clearly shows 

that the main deficiency of the off-the-shelf approach is not the 
inefficient query mechanism but the overhead of maintaining 
static overlay connections. Therefore we argue that the results 
obtained with the off-the-shelf-approach are also valid for any 
P2P file sharing systems using static overlay connections, not 
only for Gnutella. We conclude from Figure 7 that the off-the-
shelf approach fails to make efficient use of network 
bandwidth, while ORION utilizes network resources 
effectively. 

C. Transfer Performance 
For evaluating the performance of the ORION transfer 

protocol, we compare it with an off-the-shelf file transfer 
approach using TCP as transport layer protocol on top of DSR 
and AODV, respectively. We found that TCP throughput is 
roughly the same for DSR and AODV. Therefore, in this 
section we present the performance results for TCP with DSR 
and omit corresponding results for AODV. We refer to the 
considered transfer protocols as ORION and Off-the-Shelf, 
respectively. For each point in the performance curves, we 
performed 20,000 queries and successive file transfers. Each 
transferred file has a size of 3 MB, reflecting the average size 
of an MP3 file. The degree of replication is 0.1 in all 
experiments, i.e., 10% of the participating nodes store copies of 
a given document. 

In a P2P file sharing system, an important feature for 
achieving user satisfaction is the number of successful file 
transfers. We analyze this performance measure in Figure 8. 
For the off-the-shelf approach, a download is considered as 
“failed”, if none of the nodes responding to the original query 
remains reachable. In the case of ORION, a download is 
considered as “failed” when the inquiring node runs out of 
alternative paths after a single re-query. Note that ORION is 
able to implicitly discover file holders that are unreachable 
when issuing the original query. Figure 8 shows that due to low 
connectivity in systems with a low number of nodes, both 
approaches are able to complete only a small number of file 
transfers. For a growing number of nodes, ORION is able to 
complete up to 40% more transfers, based on the file-oriented 
re-query process. We conclude that ORION can provide high 
user satisfaction by completing a large fraction of file transfers. 

One of the most important performance measures for data-
intensive applications running on mobile devices is the 
transmitted data volume, due to scarce bandwidth and energy 
resources. In a P2P file sharing application, a trivial lower 
bound for the volume generated by a file transfer is the size of 
the file. This bound holds under the assumption that the 
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Figure 8.  Successful transfers vs. size 
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Figure 9.  Overhead vs. size 



network route used for the transfer spans only a single hop and 
that there is no overhead for packet headers, flow control and 
packet retransmissions. However, the transmission might 
experience significant overhead due to network routes 
spanning more than one hop as well as due to retransmissions 
of lost or delayed packets. 

We investigate the average overhead for a successful file 
transmission in percent of the total file size of 3 MB. Figure 9 
plots the overhead as a function of the number of nodes. For 
few nodes, in most cases files are transferred between direct 
neighboring nodes. In this case, most overhead is control 
overhead. We find that the off-the-shelf approach transmits 
more than twice the file size over the wireless medium. As 
shown by an analysis of the ns-2 trace files, the main reason for 
this are retransmissions of packets delayed by the route 
maintenance of DSR, as well as longer transfer routes. Route 
length increases if a direct connection between the sending and 
receiving node fails, while a longer route via an intermediate 
node exists. Recall that in this case, DSR will recover from 
route failure globally, using the longer route. The scheduling 
algorithm of ORION reduces the amount of retransmissions of 
delayed packets. Furthermore, in case of route failure, ORION 
will resume the transmission from another nearby node using 
the file routing table. These features lead to a total overhead 
below 50% for few nodes. For a growing number of nodes, 
overhead increases for both the off-the-shelf approach and 
ORION, as the average length of a network route increases. 
However, ORION stays superior to the off-the-shelf for the 
same reasons. From Figure 9 we conclude that ORION 
provides a file transfer mechanism that is highly efficient in 
bandwidth usage. 

In further experiments, we compared the throughput of the 
ORION transfer protocol to the off-the-shelf approach. The 
experiments show that the throughput is comparable for both 
approaches. Note that a congestion control mechanism for the 
ORION transfer protocol is subject to future work, thus we did 
not consider cross traffic in our experiments. Due to space 
limitations, we do not discuss the results in detail. 

VI. CONCLUSION 
In this paper, we presented the Optimized Routing 

Independent Overlay Network (ORION), a special-purpose 
approach for P2P file sharing tailored to MANET. ORION is 
completely implemented on the application layer and does not 
depend on support of a MANET routing protocol. As building 
blocks, ORION comprises of an algorithm for construction and 
maintenance of an application-layer overlay network that 
enables routing of all types of messages required to operate a 
P2P file sharing system, i.e., queries, responses, and file 
transmissions. It combines application-layer query processing 
and overlay network construction with the network layer 
process of route discovery and transparently aggregates 
redundant transfer routes on a per-file basis. The ORION 

transfer protocol enables efficient file transfers on top of the 
overlay connections established by the search algorithm. 

In a detailed ns-2 simulation study, we illustrated the 
performance gains of ORION compared to an off-the-shelf 
approach based on a P2P file sharing system for the wireline 
Internet, TCP and a MANET routing protocol. We found that 
ORION significantly increases search accuracy and reduces 
overhead for searching. Furthermore, ORION enables more 
reliable file transfers with lower overhead compared to the off-
the-shelf approach. 

In future work, we will combine the content based routing 
facilities provided by ORION with reactive MANET routing 
protocols in order to use synergies in mechanisms and data 
structures. Closely integrated with the functionality of the 
network layer, the key concepts of ORION can provide a 
general-purpose foundation not only for P2P file sharing but 
also for many other MANET based P2P applications. 
Furthermore, a congestion control mechanism for the ORION 
transfer protocol will be developed to guarantee fairness with 
respect to other transfers. 
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