
A Distributed Search Service for Peer-to-Peer File Sharing
in Mobile Applications

Christoph Lindemann and Oliver P. Waldhorst
University of Dortmund

Department of Computer Science
August-Schmidt-Str. 12

44227 Dortmund, Germany
http://www4.cs.uni-dortmund.de/~Lindemann/

Abstract

In this paper, we present the concept of Passive
Distributed Indexing, a general-purpose distributed
search service for mobile file sharing applications,
which is based on peer-to-peer technology. The service
enables resource-effective searching for files
distributed across mobile devices based on simple
queries. Building blocks of PDI constitute local
broadcast transmission of query- and response
messages, together with caching of query results at
every device participating in PDI. Based on these
building blocks, the need for flooding the entire
network with query messages can be eliminated for
most application. In extensive simulation studies, we
demonstrate the performance of PDI. Because the
requirements of a typical mobile file sharing
application are not known – or even do not exist at all
– we study the performance of PDI for different system
environments and application requirements. We show
that due to the flexible design PDI can be employed for
several kinds of applications.

1. Introduction

The technical improvements in microelectronics

increase the availability of computers in every part of
human live. Low cost Laptops and Notebooks as well
as powerful Personal Digital Assistants (PDAs), and
even watches running fully featured operating systems
[11] enable access to complex information at any time
and from any place. Sophisticated wireless access
technologies, e.g. UMTS, enable Internet access from
almost everywhere in the world. However, even today
55% of all digital information resist not on public
World Wide Web servers, but on personal computers.
Equipped with interfaces for short- to medium-range
wireless communication, e.g. based on the IEEE 802.11
[5] or Bluetooth [1] standards, mobile devices can form
spontaneous self-organizing communication structures,

so called Mobile Ad-Hoc Networks (MANETs [3]).
These structures can be used to share data in common
and innovative mobile applications. For example, data
on PDAs can be shared by many persons based on full
text or keyword search. Furthermore, communication-
enabled MP3-Players can be used to exchange music in
the MP3-format directly between devices. Growing
spread of mobile DVD players and enhanced
throughput of wireless communication may soon
enable similar scenarios for digital movies. Perhaps one
day electronic books will be able to search for related
literature by title, keyword of even full text. This kind
of innovative applications can take advantage of the
bulk of information scattered across mobile devices. To
enable effective data exchange in such environments,
mechanisms are needed to discover a document of
interest on remote devices. Document searching
constitutes a building block of each file sharing system.

A promising approach for file sharing in wireline
networks is based on peer-to-peer technology [13]. A
peer-to-peer file sharing system is distributed, self-
organizing and more or less decentralized. Several
solutions for file sharing in wireline networks have
been proposed. Today, the most popular solutions
include the system formerly known as Napster [10],
and the Gnutella protocol [4]. These approaches
heavily depend on connectivity among peers and other
network components, such as dedicated index servers,
to provide searching capabilities. A first approach to
port peer-to-peer technology to MANETs is 7DS [12],
which is designed to share documents among peers to
enable Web-browsing without connection to the
Internet.

In this paper, we introduce Passive Distributed
Indexing (PDI), a general-purpose distributed search
service for document exchange in mobile applications,
which is based on peer-to-peer technology. PDI defines
a set of simple messages for transmission of queries
and responses. All messages are exchanged using local
broadcast transmission. PDI supports forwarding of
messages over several hops similar to techniques

known form routing in mobile ad-hoc networks [3].
Beside, PDI eliminates the need for flooding the entire
network with query messages by maintaining an index
cache at every device. This index cache is used to store
pairs of keywords and document identifiers
investigated in recently received reports. The index
cache can be used to answer popular queries without
forwarding them to a device that actually stores a
matching document.

In extensive simulation studies, we investigate the
performance of PDI for a set of different mobile
computing environments and requirements of mobile
applications. The computing environment defines
system parameters such as the number of mobile
devices participating in a distributed search service,
their mobility model, and the transmission range of
their interfaces for wireless communications.
Application requirements specify the parameters of the
workload generated by the applications running on top
of PDI, i.e., the number of shared documents, the
number of keywords occurring in queries and the time
elapsing between two successive queries by the same
device. PDI is designed to provide a general-purpose
search service for mobile applications; therefore, we
investigate the performance of PDI for different
computing environments and application requirements.

This paper is organized as follows. Section 2 gives
an overview over systems for wireline and wireless
peer-to-peer file sharing. Section 3 describes the design
and illustrates the basic operation of PDI. In Section 4,
we present an in-depth performance study
demonstrating the applicability of the introduced
concepts. Finally, concluding remarks are given.

2. Related Work in Peer-to-Peer File

Sharing

Most solutions for peer-to-peer file sharing support

searching for documents by keywords. To provide this
feature, an index is needed to map a keyword on a set
of matching documents. Today’s peer-to-peer file
sharing systems use different approaches for providing
such an index, which differ in the degree of
centralization. A system in which all peers are equal
and no searching functionality is centralized is called a
pure peer-to-peer system, whereas systems using
special devices for providing index functionality are
called hybrid peer-to-peer systems [16].

As an example for a hybrid peer-to-peer system,
Napster [10] employs a centralized index hosted by an
index server at the Napster site. The index reports hits
for documents that are stored at devices, which are
currently connected to the index server. Centralized
approaches such as Napster yield very fast queries,
given a sufficient capacity of the central site. The fault
tolerance and scalability of a centralized system is
limited, because the operation of the entire system

depends on connectivity and operation of the central
index server. In particular, search operations can only
be performed by devices currently connected to the
index server. Furthermore, documents can only be
found, if they are located on devices that are connected
to the index server. Approaches used by hybrid peer-to-
peer systems as Napster are not well suited for
environments consisting of mobile devices equipped
with interfaces for short- to medium-range wireless
communication for two reasons. First, in general there
are no devices providing extraordinary computing
power and storage capacity, which is suitable to
provide centralized index functionality. Second, even if
there is a centralized index server, short-range wireless
communication cannot guarantee that it is always
reachable from all mobile devices. Opposed to Napster,
the search service presented in this paper does depend
neither on existence of nor on connectivity to a
centralized index server.

As an example for a pure peer-to-peer system, the
Gnutella protocol [4] implements fully distributed
searching. Queries are broadcasted to all peers by a
multi-hop flood algorithm that transmits them from
device to device. Decentralized systems as Gnutella
offer a high degree of fault tolerance, because the
operation of the system does not depend on the
connection to a dedicated device. However, the flood
algorithm employed for searching requires each device
to maintain a connection to at least one peer.
Furthermore, flooding the entire network with query
messages limits Gnutella’s scalability [15]. Opposed to
Gnutella, the approach presented in this paper does not
need to discover and maintain connections between
participating devices. Additionally, there is no
requirement for flooding the whole network with query
messages in most application scenarios, as shown in
Section 4.

Due to growing interest in Napster and Gnutella,
solutions for peer-to-peer file sharing achieve
increasing importance in wireline networks. Intuitively,
it is obvious to transfer the successful peer-to-peer
technology to the context of self-organizing mobile
systems (MANETs). However, the impact on file
sharing technologies in mobile environments is still
limited. A first approach to port peer-to-peer
technology to mobile environments is 7DS [12]. 7DS
supports Web browsing by on-the-fly file sharing
among peers that are not necessarily connected to the
Internet. For queries, 7DS implements a multi-hop
flooding algorithm combined with multicast delivery of
queries. If a device holds a document matching a query,
a report is transmitted to the host that has send out the
query. Opposed to 7DS, the approach presented in this
paper provides searching capabilities for documents
outside the wireless transmission range without
flooding the entire network with query messages.
Instead, query results are locally broadcasted, cached at

several devices, and can be delivered on behalf of the
device, which actually stores a matching document.
Multi hop forwarding of queries as well as multi hop
forwarding of query results may additionally be
enabled. However, as Section 4 shows, forwarding
messages for more than two hops is not necessary for
most applications.

Several methods for reducing the network load
generated by flooding a mobile ad hoc network with
messages have been proposed. Most approaches are
related to MANET routing issues, e.g. tree based
approaches [9] or clustering algorithms [8]. Recent
work transfers the ideas of clustering algorithms to
peer-to-peer systems for mobile ad hoc networks [7].
Opposed to this previous work, our approach does not
present a solution for implementing efficient network-
wide flooding of messages, but eliminates the need for
flooding in many application scenarios, as shown in
Section 4.

3. Passive Distributed Indexing

We introduce Passive Distributed Indexing (PDI), a

simple approach for file searching in mobile
environments. PDI is intended to provide a general-
purpose file search service, which can be used by
several kinds of mobile applications running on top of
it. Note that PDI does not specify how the transmission
of a located document is performed. E.g. documents
may be transmitted using sophisticated ad-hoc routing
mechanisms, or even employing a wireless WAN, if
available.

To implement PDI, each mobile device maintains a
local repository, consisting of a set of files stored in the
local file system. PDI provides search services for all
documents in the repository. Each document can
uniquely be identified by the path in the local file
system together with a unique device identifier, e.g. the
IP or MAC address of the mobile device. We refer to a
unique pair of path and device identifier as document
identifier.

Besides the repository, each mobile device
implementing PDI maintains a local index cache. An
index cache is a data structure that stores pairs of
keywords and document identifiers for documents
matching these keywords. PDI defines a mechanism to
fill the index cache with pairs of keywords and
document identifiers for documents located at remote
devices. The index cache can be used by a mobile
device to generate answers for queries, even if it does
not store any matching document.

Building blocks of PDI constitute local broadcast
transmission of query- and response-messages, together
with caching all received query results in the local
index cache. A query is defined by a query string,
consisting of several keywords. Currently, we assume
that a document matches a query only if it matches all

keywords in the query, i.e. the keywords are connected
by a Boolean AND operation. Query-messages are
transmitted using local broadcast. To overcome the
shortcomings of low wireless transmission range of the
communication interfaces, queries may be forwarded
for a predefined number of hops. Note that for many
applications, forwarding messages by more than two
hops is not necessary, as shown in Section 4. In the
same way, response-messages are transmitted and may
be forwarded from device to device in parts or as a
whole. All mobile devices listen for broadcasted
responses, even if they did not actually issue a query.
When a response is received, all reported references to
matching documents are added to the local index cache
for all keywords contained in the original query. We
limit the maximum number of entries in the index
cache and replace old index cache entries by new ones
in a least-recently-used fashion.

Passive distributed indexing implicitly replicates
results for popular queries in index caches at several
mobile devices, making heavy usage of locality
investigated in the query stream [15]. Thus, in most
cases popular queries can be answered by several
mobile devices, even if they do not actually store any
matching documents. To ensure index consistency, we
expire documents after a certain timeout. When this
timeout has elapsed, we remove all references relating
keywords to this document from the index cache.

PDI defines two types of messages. A message of
type QUE is used to broadcast queries. A QUE
message contains a query string, which consists of one
or more keywords. A message of type REP reports
query results in response to a QUE message. It contains
the query string from the QUE message as well as the
unique identifiers of one or more documents matching
the query. To enable message forwarding, each PDI
message contains a field SRC, which contains the
unique identifier of the mobile device that generated
the original message, a field SEQ, containing a unique
and strictly increasing sequence number for each
mobile device, and a field TTL, indicating the number
of hops a message may be forwarded. When a mobile
device forwards a message as described below, TTL is
decremented by one, while SRC and SEQ are
preserved. By this way, forwarding a message more
than one time can be prevented by storing the highest
SEQ entry received from each source device, while
limiting the total number of hops a packet may be
forwarded.

When a device receives a QUE message, at first it
searches for documents matching the query string in
the local document repository. PDI does not specify
how documents are matched against the query string.
E.g., it is possible to match document titles, meta-
descriptions stored with the documents or even perform
a full text search. The matching process yields a set l
of document identifiers for matching local documents.

D

a) Device A issues a
QUERY message with
query string q

q?

q:d2,d3

CB

q:d1,d2

A

. . .

b) Device B forwards the
QUERY message

q?

q:d2,d3

CB

q:d1,d2

A

. . .

c) Devices B and C
generate a REP
message and send them
to their neighbors

q:d2,d3q:d1,d2

q:d2,d3

CB

q:d1,d2

A

q:d1,d2

d) Device B selectively
forwards the REP
message from C

q:d3

q:d1,d2,d3

CB

q:d1,d2,d3

A

q:d1,d2

Figure 1: Illustration of message forwarding in PDI

After matching local documents, the device searches

for entries matching the query string in the local index
cache. Matching in the index cache is performed by
matching each keyword contained in the query string
against the keywords in the keyword / document
identifier pairs stored in the index cache. Note that a
remote document matches a query only if a keyword /
document identifier pair is found for all keywords in
the query in order to implement the AND operation.
This matching process yields a set of unique
identifiers for matching remote documents. The joint
set of local and remote document identifiers

 is broadcasted in a REP message, which
contains the query string Q and all document identifier

.

rD

lD D D= ∪

d D∈

r

)

To compensate the shortcomings of the low
transmission range introduced by interfaces for short-
to medium-range wireless communication, PDI-
enabled mobile devices can be configured to forward
QUE messages, given that the TTL field of the
received message does not equal zero. Messages of
type QUE consist only of a query string containing a
few keywords and therefore are small and simple.
Thus, they can be forwarded without introducing
unbearable load to the wireless network.

Opposed to QUE messages, a REP message contains
a list of document identifiers, which may be of
considerable size. Therefore, forwarding complete REP
messages over several hops will significantly increase
network load. To keep load low, PDI-enabled devices
selectively forward REP messages. When a device
receives a REP message containing a query string Q
and a set of documents D, it searches the local index
cache for all pairs of keywords (,q d q Q∈ and
document-identifiers . The index cache is
updated for all pairs , which are not found in the
cache. If the index cache reaches maximum size, old
entries are replaced by new ones in a least-recently-
used fashion. If the TTL field of the original message is
not equal 0, a modified REP message is generated,
which contains exactly the set of documents

d ∈
(,q d

D
)

{ }dD′ ′= ,
for which was not found in the index cache.
The REP message is broadcasted with decremented
TTL field, as well as SRC and SEQ fields preserved
from the original message. Selectively forwarding REP
messages significantly reduces network traffic. The
intuition behind selective forwarding is that if a part of
a REP message matches a local cache entry, the

message must have been received from a different
direction than the original REP message that generated
the entry in the index cache. Therefore, the result is
already known roughly in the area in which the
message will be forwarded, thus, the transmission is
redundant and can be avoided.

(,q d ′

Message forwarding in PDI is illustrated in Figure 1.
We assume an environment with three mobile devices,
referred to as device A, B, and C. All devices are drawn
as filled gray circles. PDI messages are drawn as light-
gray rectangles together with arrows indicating the
direction of the wireless communication. White
rectangles show a fraction of the local index cache at
each device. In our example, we assume that the index
caches of devices B and C each hold two document
identifiers matching a query q. The document identifier
d2 is stored in both caches, the document identifiers d1
and d3 are only stored at device B and C, respectively.
We assume that device A issues a QUE message for
query q (Figure 1a). The message is transmitted using
local broadcast, and therefore is only received by
device B. B forwards the message using local broadcast
again, so the query finally reaches device C (Figure
1b). As response to the query, each B and C generates a
REP message, containing the entries of the local index
cache that match q (Figure 1c). Similar to QUE
messages, the REP messages are transmitted using
local broadcast, so the message from B reaches A as
well as C. All devices update the local index cache with
the data contained in B´s message. The REP message
from C cannot reach A directly and must be forwarded
by B. To avoid unnecessary network traffic, B
selectively forwards only the entries in the message,
which are not already stored in its local index cache
(Figure 1d). Not that at the end of the transmission, the
content of all index caches holds identical entries for
query q (not shown).

4. Performance Results

The performance of passive distributed indexing is

affected by a wide range of parameters. We divide
these parameters into system parameters, application
parameters, and protocol parameters. System
parameters describe the environment used for running
PDI from the technical point of view. The system
parameters include the number of mobile devices, the

)

transmission range of the wireless communication
interfaces, and the mobility model, describing the
movement of the mobile devices. Application
parameters are parameters specific to the mobile
application running on top of PDI. These parameters
include the number of documents in each local
repository, the number of keywords of interest in the
application domain, and the distribution of keywords in
the queries as well as the distribution of time elapsing
between two successive queries by the same mobile
device.

To keep PDI simple, we define only three
parameters, which control the protocols operation. The
first parameter is the index cache size, i.e., the storage
contributed to PDI by each mobile device. Note that
this parameter is related to the system running PDI, for
the maximum index cache size cannot exceed the
memory available at a mobile device. The second
parameter is the maximum time-to-live value used for
packet forwarding, i.e. the initial value of the TTL field
in a PDI message at its original source. By modifying
the maximum time-to-live, PDI can be configured to
run in different forwarding modes. The third parameter
is the document timeout, which specifies how long
entries for a particular document should be kept in the
index cache. In the remainder of this paper, we assume
that the time between changes to the document
repositories is much bigger than simulation time.
Therefore, we neglect the impact of document
modifications and index cache consistency.

PDI has been designed as a general-purpose search
service for usage in a set of different system
environments and application domains; therefore, we
have performed extensive simulation studies to
evaluate the performance of PDI in different scenarios.
In the remainder of this section, we first describe the
experimental setup used to model these scenarios. After
that, we illustrate how the protocol parameters can be
used to compensate the impact of system and
application parameters on protocol performance. At
last, we illustrate the performance of PDI in the initial
warm-up phase.

4.1. Experimental Setup

To evaluate the performance of PDI in different

system environments and for different application
requirements, we conduct simulation studies based on
the Network Simulator ns-2 [6] with mobile and
wireless extensions. ns-2 can be used to simulate
mobile devices and wireless communication using a
protocol stack including UDP, IP an MAC layer. We
developed an ns-2 application implementing PDI as
described in Section 3. The application can be
configured to support different values for index cache
size and maximum time-to-live. An instance of the PDI
application is attached to each simulated mobile device,

using the UDP/IP protocol stack and a MAC layer
according to the IEEE 802.11 standard for wireless
communication [5]. We run the wireless
communication interface in the ad-hoc mode using
unreliable local broadcast. As radio-propagation model,
we chose two-ray ground propagation [14]. Different
transmission powers of the communication interface
were selected to model different transmission ranges.

Besides a PDI-enabled application and a protocol
stack for wireless communication, we need to define a
mobility model to capture the movements of the mobile
devices as well as a workload model to capture the
queries generated by the application running on top of
PDI. For the mobility model, we assume an area of
1000 m × 1000 m. mobile devices move in this
area according to the random waypoint mobility model
[3], which is commonly used to model the movement
of individual pedestrians. According to this mobility
model, each device starts at a location chosen
uniformly at random inside the considered area and
moves to another randomly chosen location. The speed
of the device is chosen uniformly at random form

NodesN

[]max0, s , where the top speed maxs may be different in
different experiments. When a device reaches its
destination, it rests for a period T , before it
continues its movement to the next randomly chosen
destination at randomly chosen speed.

hold

For the workload model, we assume that every
device participating in PDI provides search
functionality on DocsN documents stored in the local
repository. Each document d , i 0 Docsi N≤ <

0,iK N
, matches a

randomly chosen set Keywords of
keywords, where

{ }1⊂ −
KeywordN s > DocsN is the number of

keywords of interest in the application domain. For
simplicity, we assume the cardinality iK , which
denotes the number of keywords matching document

, to be calculated by id i KK N eywords eywordsN = − Ki ,
i.e., there is a linear correlation between the document
number and the number of matching keywords. Each
mobile device sends out queries for a randomly chosen
keyword in randomly chosen intervals using QUE
messages as described in Section 3. The time between

Table 1. Parameters used in experiments.
Parameter Value
Total simulation time 6 h
Simulation area 1000 m × 1000 m
Maximum speed maxs 1.5 m/sec
Holding time T hold 50 sec
Number of devices NodesN 64
Transmission Power 17.6125 mW
Inter-request time T Think 120 sec
Number of keywords KeywordsN 512
Slope of query distribution β 0.9
Number of documents DocsN 16

two successive queries is chosen randomly according to
an exponential distribution with mean Think . For
simplicity, we restrict our experiments to queries
consisting of a single keyword. The keyword contained
in a query is chosen randomly according to a Zipf-like
distribution [2], i.e., for ity for choosing
keyword

T

 the probabil
jk holds ()Pr jk k j α−= ≅ , for 0 1α≤ ≤ .

Note that depending on the value of α, the query stream
can bear significant locality.

In various simulation runs, we found that the
performance of PDI is rather independent of the system
parameters defined by the mobility model, i.e.
maximum speed maxs and the holding time T as
defined by the random waypoint model. Furthermore, it
is independent of application parameters modeling the
mean time between two successive queries, ThT , and
the number of keywords used in queries,

hold

ink

KeyworN ds .
Therefore, we fix these parameters to the values shown
in Table 1. All other parameters may be variable in
some experiments. If not stated otherwise, these
parameters are set to default values, which are also
shown in Table 1.

As primary performance measure in our simulation
studies, we define query hit rate. To calculate query hit
rate, we count the number of unique document
identifiers in REP messages received by the device that
issued a particular query. Query hit rate is calculated as
the quotient

repN

rep all , where all denotes the number
of all documents matching a query. Note that query hit
rate differs from hit rate considered in studies of Web
caching systems, which measures the number of
documents that can be found in the cache when
requested by a unique identifier. In general, there are
many documents matching a particular query, therefore
query hit rate might satisfy a user even if it is much
lower than 50%. In future work, we will investigate
other performance measures, e.g. system response time.

N N N

4.2. Sensitivity to System Parameters

In a first experiment, we investigate the sensitivity

of PDI to the number of mobile devices participating in
the searching application. The results of this
performance study are illustrated in Figure 2a. We
found that for a small number of devices participating
in the system, the size of the local index caches has
only limited impact on the performance of PDI.
Furthermore, we found that for small index cache sizes,
the impact of a growing number of mobile devices on
the performance of PDI is rather limited. This can be
explained by the fact that every device contributes new
documents to the search service, so that small index
caches cannot hold entries for all documents matching
a query. For growing index cache sizes, the
performance of PDI increases with a growing number

of devices. We conclude that index caches may be
small if the number of devices participating in the
system is limited. To gain the largest possible benefit
of the variety of documents contributed to the search
service by a large number of devices, sufficient index
cache size should be provided.

Similar to the impact of index cache size, the impact
of message forwarding is limited in systems with low
density of mobile devices, as shown in Figure 2b.
Forwarding messages for more than eight hops gains
only marginal improvements in query hit rate for such
systems. However, for a growing number of mobile
devices, query hit rate grows faster in systems with
message forwarding enabled than in non-forwarding
systems. In environments with about 64 mobile devices
per square kilometer, configuring the system for packet
forwarding can improve query hit rate by almost 20%,
because with high probability a forwarded message will
reach several devices. This benefit vanished when the
number of devices grows further, because a high
number of devices carry information of interest around
in the local index cache, which replaces message-
forwarding adequately. We conclude from Figure 2b
that message forwarding is useful in system
environments showing a medium density of mobile
devices, while in systems with extreme device densities
message forwarding should be disabled to avoid
unnecessary network traffic.

In a second experiment, we investigate the
sensitivity of PDI to the transmission range of the
wireless communication interfaces used by the mobile
devices. The results of this study are shown in Figure
3a. For a transmission range below 100 Meters, PDI
does not gain sufficient query hit rates despite of the
size of the individual index caches. This can be
explained by the fact that in most cases broadcasted
QUE messages are received only by a small number of
devices. With a transmission range around 115m, PDI
gains sufficient query hit rates, given that a reasonable
size of the index cache is provided. We conclude that
for short-range communication devices, e.g. Bluetooth
[1], the number of participating devices must be high to
enable the effective employment of PDI.
As another interesting result, we found that for high
communication range PDI with message forwarding
disabled gains best performance, see Figure 3b. This
investigation can be explained by the fact that
forwarding responses to uncommon queries over great
distances will fill index caches with junk entries,
replacing entries for popular queries. We conclude that
in environments with medium wireless transmission
ranges, message forwarding should be enabled to
benefit from PDI. When transmission range is high,
message forwarding should be disabled to avoid
spamming index caches with junk entries.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120
Number of Devices

H
it

R
at

e

140

32 Index Entries
128 Index Entries
512 Index Entries
2048 Index Entries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500
Transmission Range in Meters

H
it

R
at

e

32 Index Entries

128 Index Entries

512 Index Entries

2048 Index Entries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Zipf Parameter β

H
it

R
at

e

32 Index Entries
128 Index Entries
512 Index Entries
2048 Index Entries

(Fig. 2a) (Fig. 3a) (Fig. 4a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140
Number of Devices

H
it

R
at

e

No Forwarding
2 Hops
4 Hops
8 Hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500
Transmission Range in Meters

H
it

R
at

e

No Forwarding
2 Hops
4 Hops
8 Hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Zipf Parameter β

H
it

R
at

e

No Forwarding
2 Hops
4 Hops
8 Hops

(Fig. 2b) (Fig. 3b) (Fig. 4b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140
Number of Documents per Device

H
it

R
at

e

32 Index Entries
128 Index Entries
512 Index Entries
2048 Index Entries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120
Number of Documents per Device

H
it

R
at

e

140

No Forwarding
2 Hops
4 Hops
8 Hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350
Time in Minutes

H
it

R
at

e

PDI hits
Real hits

(Fig. 5a) (Fig. 5b) (Fig. 6)

Figures 2 - 6. Performance results for PDI for different system and application scenarios

4.3. Sensitivity to Application Parameters

As shown in Figure 4a PDI is extremely sensitive to
locality in the request stream for small sizes of the
index cache. For large cache sizes, e.g. 2048 entries,
PDI can achieve a hit rate of more than 70% despite of
the locality. We conclude that for applications offering
no significant locality in the request stream, the sizes of
the index cache must be chosen adequate. Figure 4b
shows the impact of query locality on different options
for message forwarding. We find that for low-locality
request streams, all forwarding options achieve
performance within a 5% interval. For higher locality,
PDI gains significant performance improvements from
packet forwarding. Note that in most cases 2-hop
forwarding performs equal to or even better than
forwarding messages over four or even more hops. This
indicates that PDI in most cases is able to resolve a
query from inside the direct neighborhood of a device.
We conclude that 2-hop message forwarding should be
enabled in applications offering a high degree of
locality in the request stream.

In a further experiment, we investigated the
sensitivity of PDI to the number of documents stored at
each device. We investigate in Figure 5a that the hit
rate of PDI decreases linearly with a growing number
of documents for a given index cache size.
Furthermore, we conclude from this figure, that the hit
rate of PDI increases with index size in a log-like
fashion, for increasing the size of the index cache by
factor four only gains a linear increase in hit rate. The
same investigation has been made for Web caching

systems with regard to cache size and cache hit rate,
respectively. It has been shown that this behavior can
be explained if a Zipf-like request distribution is
assumed [2].

These investigations may lead to the conclusion that
more sophisticated forwarding strategies rather than
increasing index cache sizes should be employed to
improve the hit rate of PDI. We investigated the impact
of message forwarding in a further experiment. The
result is shown in Figure 5b. We notice that the impact
of document forwarding increases PDI Hit rate by more
than 10% if only a small number of documents is
contributed to the search service by each device. As an
interesting fact, again PDI configured for 2-hop
forwarding gains comparable performance to
forwarding over four or even more hops. However,
with growing number of documents, more sophisticated
forwarding strategies loose ground in comparison to no
forwarding at all. Again, this behavior can be explained
by the fact that broadcasting query responses over
many hops will fill caches with junk entries. We
conclude that for applications, in which only a few
documents are contributed by each device, performance
of PDI can be improved by configuring the system for
2-hop forwarding.

4.4. Transient behavior

As a last experiment, we investigated the transient

behavior of PDI for a single application scenario. In
Figure 6, we plot the cumulative query hit rate
achieved by PDI in a 10-minute period over total

simulation time. For comparison, we also illustrate the
rate of hits reported form devices, which actually hold
a matching document. This hit rate, denoted as real hit
rate, indicates the performance of a query scheme
using single-hop point-to-point communication without
caching results in local index caches. We investigate
that even ten minutes after simulation start, the hit rate
of PDI is about 10% higher than the real hit rate. The
PDI hit rate steadily increases until it reaches an
average of about 75%. We conclude form this
performance study that there is no need for a
sophisticated mechanism to perform an initial warm-
up. After short time, PDI will fill local index caches in
a self-organizing manner, and therefore will be able to
answer queries providing hit rates as stated above.

5. Conclusion and Future Work

We presented the concept of Passive Distributed

Indexing, a general-purpose distributed document
search service for mobile file sharing applications. PDI
is based on peer-to-peer technology, i.e., PDI does not
require any centralized infrastructure for providing
searching capabilities. Building blocks of PDI
constitute local broadcast transmissions of query- and
response-messages together with caching results of
popular queries at every device participating in PDI.
Using these building blocks, PDI eliminates the need of
flooding the whole network with query messages.
Furthermore, it can be configured to support different
system environments and application requirements by
adjusting three parameters, namely the size of the local
index caches, the maximum number of hops that a
message will be forwarded, and the document timeout
used for expiry of cache entries.

In extensive simulation studies, we demonstrated the
usefulness of PDI for different systems and
applications. We conclude from this performance
studies, that for systems with a high density of mobile
devices and applications bearing low locality in the
query stream, sufficient index cache sizes should be
provided. In systems with a medium density of mobile
devices and medium wireless transmission ranges, 2-
hop packet forwarding should be enabled, whereas
packet forwarding should be disabled if either the
number of mobile devices or their transmission range is
high. A large number of documents contributed to PDI
by each mobile device can be handled by providing
sufficient index size. Finally, PDI provides an initial
filling of index caches in very short time, eliminating
the need of sophisticated warm-up mechanisms.

Future work on PDI will lead in three main
directions. First, we will investigate the impact of
document modifications on the performance of PDI and
design appropriate mechanisms for providing index
caches consistency. Second, we will evaluate the
performance of PDI considering more sophisticated

workload models, e.g. workloads consisting of location
depended queries. Third, we will develop a prototype
implementation of PDI and test it in a mobile e-
learning environment at University of Dortmund as a
prove-of-concept.

References

[1] C. Bisdikian, An Overview of the Bluetooth Wireless
Technology. IEEE Communications 39(12), 86-94, 2001.
[2] L.Breslau, P. Cao, L. Fan, G. Phillips, and S. Schenker,
Web-Caching and Zipf-like Distributions: Evidence and
Implications. Proc. 18th Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE INFOCOM
99), New York, NY, 1999.
[3] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J.
Jetcheva, A Performance Comparison of Multi-Hop Wireless
Ad-Hoc Network Routing Protocols. Proc. 6th ACM/IEEE Int.
Conf. on Mobile Computing and Networking (MobiCom 98),
Dallas, Texas, 1998.
[4] clip2, The Gnutella Protocol Specification v0.4, 2001.
Available from http://www9.limewire.com/developer/
gnutella_protocol_0.4.pdf
[5] I. S. Department. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications.
IEEE Standard 802.11-1997, 1994
[6] K. Fall and K. Varadhan, The ns-2 manual. Technical
Report, Berkeley University, 2002. Available from
http://www.isi.edu/nsnam/ns/ns-documentation.html
[7] R. Gold and C. Mascolo, Use of Context-Awareness in
Mobile Peer-to-Peer Networks. Proc. 8th IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS
01), Bologna, Italy, 2001.
[8] C. Lin and M. Gerla, Adaptive Clustering for Mobile
Wireless Networks. IEEE Journal on Selected Areas in
Communications 15(7), 1265-1275, 1997.
[9] H. Lim and C. Kim, Flooding in Wireless Ad Hoc
Networks, Computer Communications 24(3-4), 353-363,
2001.
[10] Napster Hompage. http://www.napster.com
[11] C. Narayanaswani, N. Kamijoh, M. Raghunath, T.
Inoue, T. Cipolla, J. Sanford, E. Schlig, S. Venkitewaran, D.
Guniguntala, V. Kulkarani, and K. Yamazaki, IBM’s Linux
Watch: The Challenge of Miniaturization. IEEE Computer
35(1), 33-41, 2002.
[12] M. Papadopouli and H. Schulzrinne, Effects of Power
Conservation, Wireless Coverage and Cooperation on Data
Dissemination among Mobile Devices. Proc. ACM Symp. on
Mobile Ad Hoc Networking & Computing (MobiHoc 2001),
Long Beach, CA, 2001.
[13] M. Parameswaran, A. Susarla, and A. Whinston, P2P
Networking: An Information-Sharing Alternative. IEEE
Computer 34(7), 31-38, 2001
[14] T. Rappaport, Wireless Communications: Principles
and Practice. Prentice Hall, 1996.
[15] K. Sripanidkulchai. The popularity of Gnutella queries
and its implications on scalability. Proc. O'Reilly Peer-to-
Peer and Web Services Conference, 2001
[16] B. Yang and H. Garcia-Molina, Comparing Hybrid
Peer-to-Peer Systems. Proc. 27th Int. Conf. on Very Large
Data Bases (VLDB 2001), Rome, Italy, 561-570, 2000

	University of Dortmund
	Abstract

	Introduction
	Related Work in Peer-to-Peer File Sharing
	Passive Distributed Indexing
	Performance Results
	Experimental Setup
	
	
	Simulation area
	Number of devices
	Slope of query distribution

	Sensitivity to System Parameters
	Sensitivity to Application Parameters
	Transient behavior

	Conclusion and Future Work
	References

