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Abstract. Today, the Internet is used by companies frequently since it
simplifies daily work, speeds up communication, and saves money. But
the more popular the Internet gets the more it suffers from various chal-
lenges like DDoS attacks. This work, therefore, proposes an anomaly-
based system that is able to detect adverse events caused by such chal-
lenges. The detection of network anomalies, in contrary to signature-
based systems, ensures that previously unknown adverse events can be
detected, too. Furthermore, the proposed system is designed for deploy-
ment within the network to allow a detection of adverse events as fast
as possible, i.e., not only at the victim’s edge of the network. To achieve
such an in-network anomaly detection the system is designed hierarchi-
cally and applies refinement of detection granularity.

1 Introduction

Today’s networks are threatened by challenges that appear with increasing fre-
quency and comprise various kinds of attacks as well as unintended network
problems. Challenges currently threatening networks include attacks like denial-
of-service (DDoS) attacks [1] and worm propagations [2]. Furthermore, unin-
tended network problems due to misconfigured nodes or flash-crowd events [3]
pose a threat to today’s networks, too. An automatic detection of adverse events
caused by such challenges is still a problem for network operators. Additionally,
autonomic networking will be a topic in the near future. Such networks need
a mechanism to detect adverse events and apply suitable countermeasures au-
tonomously.

With DDoS attacks an attacker does not exploit a weakness of the victim’s
operating system or application but aims to overload resources like link capacity
or memory by flooding the system with more traffic than it can process. The
attack traffic is generated by many slave systems which the attacker has com-
promised before. The attacker only has to coordinate all these slave systems to
start the attack nearly at the same time against a single victim. Internet worms
on the other hand exploit security holes in operating systems or applications to
infiltrate a system. Afterwards, they start to propagate themselves to as many
other systems as possible. One side effect of this propagation is the increasing
bandwidth consumption since more and more worm instances try to propagate
themselves to other systems. Today’s countermeasures to worms are signature-
based detection systems scanning for well-known worms.



An early detection of adverse events caused by such challenges allows a fast
reaction and, thus, ensures a suitable protection of the network, the victims, and
the network’s resources. This requires a detection system within the network.
Programmable networks enable a router to flexibly set up new services on that
router, i.e., within the network. Therefore, programmable networks are suitable
to achieve an in-network deployment of a detection system for adverse events.
Such a detection system, however, has to face some difficulties, too. One of
those is the fact that – in the worst case – the detection takes place within high-
speed networks. This means that, though an on-line analysis is performed by the
detection system, a negative impact on that router’s forwarding performance
must be avoided. Therefore, we propose the usage of a hierarchical detection
system that applies refinement, i.e., detection granularity and analysis effort are
adapted to the current stage of the detection. Such a system, therefore, works
resource-saving and ensures that – even if it is built completely in software –
there is no affection of a router’s forwarding performance.

Furthermore, we propose to use an anomaly-based detection since various
challenges, e.g. DDoS attacks, cannot be detected by a signature-based system
due to their usage of protocol-conform packets. An anomaly-based detection sys-
tem, however, analyzes traffic behavior and, therefore, can detect such challenges
as well as previously unknown adverse events. Lastly, a signature-based system
is only applicable in high-speed environments if it uses special-purpose hardware
since it has to inspect each packet deeply.

If a DDoS attack, for example, is running error messages are generated by
routers close to the victim as soon as the victim is not reachable anymore. Such
changes of the traffic can be detected by combining various anomalies. In case of
worm propagations an anomaly-based detection system can collect hints on such
an adverse event e.g. by analyzing the ratio of error messages due to closed ports
to the total number of connection requests. Such error messages are generated
by scanned systems that are not vulnerable to this specific worm.

This paper details on a system for in-network anomaly detection. It is orga-
nized as follows: section 2 presents a short introduction to packet selection mech-
anisms. Section 3 details on the main characteristics of the detection system –
a hierarchical architecture and refinement. Furthermore, architecture details are
given for an example scenario. An evaluation of this example scenario then is
described in section 4 and finally, section 5 gives a short summary.

1.1 Related Work

There are some existing approaches for DDoS attack detection that use special-
purpose hardware: [4] uses network processors to perform a deep packet in-
spection of all observed packets in a backbone network. [5] uses special-purpose
hardware to add a timestamp to each packet and then, does the analysis off-line.

Other anomaly-based approaches either cannot be applied in high-speed net-
works due to their high resource consumption or perform only a very coarse-
grained detection without further refinement. The pushback mechanism [6], for
example, is activated as soon as congestion occurs on a router. In this case a



flooding attack is assumed and a rate limiter is installed for the highest band-
width aggregate of dropped packets. This approach has several disadvantages:
an attack can be detected not until congestion occurs on a router and hence a
detection is only possible at the edge of the network. Furthermore, no further
verification is done if the rate limited aggregates really belong to an attack.
Sterne et al. [7] detects stochastic anomalies by using a threshold-based DDoS
detection mechanism on active networking nodes but no further refinement is
done if an attack has been detected. Bro [8] is an open source network intru-
sion detection system that applies refinement. But – unlike our approach – the
refinement has a different scope. Bro is an event-driven system and consists of
three parts: the packet capture, the policy-neutral event engine, and the policy
layer. A problem of this approach is that Bro creates lots of state by deep packet
inspection and semantic analysis. Finally, the MVP architecture of Cisco Sys-
tems [9] uses refinement for detection of DDoS attacks, too, but this refinement
is not very flexible and is only done in two steps, i.e., multiple stages are not
possible for refinement.

2 Packet Selection

A packet selection mechanism is used especially in high-speed environments to
reduce the number of packets that have to be inspected by a specific application,
e.g. measurement or intrusion detection. The IETF working group PSAMP [10]
proposed two types of packet selectors: filtering and sampling. Filtering is used
if only a particular subset of packets is of interest. Filtering schemes are always
deterministic and are based on packet content or router state. Therefore, fil-
tering schemes are not suitable for a detection of adverse events. Any attacker
who knows the filtering rules can adapt his challenge in a way that his packets
are not selected by the detection system. This makes bypassing of the detec-
tion system easy. In contrast to filtering, sampling is used to infer knowledge
about an observed packet stream without inspecting all packets. Therefore, only
a representative subset of packets is selected which enables an estimation of
properties of the total traffic. Sampling methods are either nondeterministic or
do not depend on packet content or router state. The sampling methods are
further grouped into two categories: random sampling and systematic sampling.

Systematic count based sampling is an example for a systematic sampling
method. This sampling method is deterministic but independent of packet con-
tent and router state. For this method a sampling interval is defined consisting
of a selection interval and a non-selection interval. A periodic trigger defines
the beginning of a sampling interval. The unit of the intervals is count based.
An example of this sampling method with a sampling interval of 5 packets, a
selection interval of 2 packets, and a non-selection interval of 3 packets is shown
in figure 1.

A sampling mechanism effectively reduces the number of packets that are
inspected but it also introduces estimation errors. Thus, the parameters of the
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Fig. 1. Example of packet selection with systematic count based sampling

applied sampling mechanism have to be chosen in such a way that the error
caused by packet selection is restricted to a predefined tolerance level.

3 Architecture

The detection system is designed hierarchical, anomaly-based, and flexible. Due
to the fact that an anomaly-based detection is performed – i.e. only traffic be-
havior is analyzed – a packet selection mechanism as described in section 2 can
additionally be applied.

The hierarchical characteristic of the system allows to split the detection
of adverse events into different stages: A basic stage that scans for stochastic
anomalies is running all the time. Specialized stages are loaded on demand for
a more detailed detection of adverse events. Thus, refinement of detection gran-
ularity is applied by the detection system, i.e., detection granularity is increased
with each subsequently loaded detection stage (see fig. 2). The basic stage of
the hierarchical detection system dedicates only low analysis effort – this stage
does only a simple packet classification – in order to perform a coarse grained
detection that scans for indications of an adverse event. Further stages then are
loaded whenever an adverse event is assumed in the basic stage. These further
stages analyze only a part of the whole packet stream due to the information
about the assumed adverse event gathered by the basic stage. Therefore, the
further stages are able to do a more fine grained detection by applying deeper
packet inspection on the reduced packet stream. Thus, the detection system
gathers more detailed information about the adverse event in each of the further
stages by using a higher analysis effort. In this paper, the notion packet stream
designates a link’s total aggregated traffic whereas a set of packets with same
characteristics, e.g., all TCP packets, is referred to as an aggregate.

In summary, the hierarchical architecture of the detection system and the ap-
plication of refinement save resources by running a basic stage with low resource
consumption all the time and by loading further stages not until a stochastic
anomaly is detected in the basic stage.

In order to detect stochastic anomalies the basic stage divides the packet
stream on the fly into intervals with a fixed length. Furthermore, aggregates of
interest are defined for observation, for example all TCP or all UDP packets.
Then, for each predefined aggregate the number of packets that belong to this
aggregate is counted in every interval. To make the system self-adaptable to net-
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Fig. 2. Architecture of a hierarchical detection system using refinement

work load changes a dynamic packet threshold representing the average packet
count in this aggregate for the last couple of intervals is calculated. At the end
of each interval, for any aggregate a check is performed if the observed number
of packets exceeds the packet threshold. To prevent the system from generating
false positive indications and starting further stages for deeper inspections un-
necessarily an interval threshold is defined. This interval threshold is necessary
due to the self-similarity of internet traffic [11] which can cause normal traffic to
exceed the packet threshold even though no adverse event is currently going on.
Therefore, an indication only is generated if the packet threshold is exceeded in
more consecutive intervals than the interval threshold. In addition to the detec-
tion of stochastic anomalies in the basic stage, the suspicious packet stream is
scanned for further anomalies in specialized stages.

Flexibility of the detection system is ensured by usage of programmable net-
works. Since service modules are not tightly coupled to the packet forwarding but
are loaded on demand, it is easy to update such modules or to add new service
modules without a change to the rest of the system. Furthermore, the hierarchi-
cal architecture of the system allows the addition of new specialized stages. All
characteristics described so far provide a flexible system for in-network anomaly
detection that can be deployed in different environments like high-speed net-
works or small provider networks.

3.1 Small provider network

This section illustrates an exemplary architecture of the system for anomaly de-
tection in case of a small provider network. In such a network detection of DDoS
attacks and worm propagations is focused since these attacks are the most preva-
lent challenges. Therefore, the system scans for stochastic anomalies in the basic
stage as described above. After detecting such a stochastic anomaly refinement
is applied by loading two specialized consecutive stages (see fig. 3). The sec-
ond stage uses a distribution anomaly to make a differentiation between DDoS
attacks and worm propagations. This can be achieved by analyzing the distribu-
tion of packets into subnet prefixes based on destination addresses. Therefore,



the whole address space is divided into subnet prefixes based on the routing table
of the node deploying the detection system. If large parts of the suspicious traffic
– the number of packets by which the packet threshold was exceeded in the basic
stage – are sent into exactly one subnet a DDoS attack is indicated since only
one victim is currently attacked. If the suspicious traffic is equally distributed to
all existing subnet prefixes a worm propagation is assumed since worms spread
all over the internet. Based on the result of the second stage attack type specific
protocol anomalies are scanned for in the third stage to identify either DDoS
attacks or worm propagations in more detail. Currently, the anomalies used in
our system for network anomaly detection offer no possibility to differentiate
between DDoS attacks and legitimate traffic with the same characteristics, e.g.
flash-crowd events [3].
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Fig. 3. Architecture of the detection system in a small provider network

In case of DDoS attacks the third stage of the detection system is mainly
based on the fact that most of the existing DDoS attacks lead to a breach of sym-
metry between incoming and outgoing sub-aggregates which belong together by
protocol definition. A TCP SYN flooding attack, for example, tries to exhaust a
victim’s open connection storage space by flooding the victim with TCP packets
with SYN flag set. Due to the mass of connection requests the victim can only
respond to a part of all requests by sending TCP packets with SYN and ACK
flag set. All remaining requests are dropped and the victim sends no response at
all if storage space is already exhausted. This leads to an asymmetry between
incoming TCP packets with SYN flag set and outgoing TCP packets with SYN
and ACK flag set which can be used to detect this kind of DDoS attack.

4 Evaluation

A prototype of the proposed detection system was implemented on a programmable
platform. The basic stage of the detection system is the only service module



loaded at system startup. If this stage detects a stochastic anomaly in any ag-
gregate, specialized service modules for further stages are loaded dynamically.

A network trace of real traffic with an average data rate of about 3 Mbit/s
was used as background traffic of a simulation. Additionally, self-generated traffic
was used representing a TCP SYN flooding attack with a packet rate of about
15 k packets per interval which corresponds to a data rate of about 0.8 Mbit/s.
The average TCP traffic within the background traffic was about 1.7 Mbit/s. Due
to the rather low bandwidth of background and attack traffic this evaluation is
only a first step towards a small provider scenario but nevertheless, it shows that
the mechanisms of the detection system work.
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The aggregated traffic – background and attack traffic – was analyzed by
our detection system (see fig. 4). The red line shows the observed number of
TCP packets per interval whereas the green line shows the packet threshold of
the aggregate TCP packets. If an indication is generated by the basic stage, the
threshold remains constant while the attack is running. We can clearly see that
the simulated attack begins in interval 14. The exceeding of the packet threshold
in more consecutive intervals than the interval threshold in the TCP aggregate
results in loading further stages of the detection system in interval 18. Then,
refinement is applied , i.e., the second stage analyzes only the suspicious TCP
aggregate in more detail. It scans for a distribution anomaly which provides a
differentiation between a DDoS attack and a worm propagation. In the simula-
tion one specific subnet prefix could be detected which most of the traffic is sent
to. Thus, the third stage is loaded that again applies refinement and analyzes
only those packets of the suspicious aggregate for DDoS-specific protocol anoma-
lies that are sent into the suspicious subnet prefix. In our simulation the third
stage was able to detect an asymmetry between incoming TCP SYN packets and
outgoing TCP SYN-ACK packets as described in section 3.1. Thus, the system
correctly detected the TCP SYN flooding attack.



5 Conclusion and Outlook

In this paper a system for in-network anomaly detection is presented which
is hierarchical and applies refinement of detection granularity. Therefore, the
system is able to detect various adverse events in different environments, e.g.
in small provider networks by scanning for stochastic anomalies, distribution
anomalies, and protocol anomalies. A simulation of a TCP SYN flooding attack
shows that our anomaly-based system is able to detect DDoS attacks.

In this paper, the evaluation was done only with low-bandwidth background
traffic. Thus, future research has to address evaluations using background traffic
with a higher bandwidth to simulate a more realistic small provider network.
Furthermore, some work has to be done to achieve a differentiation between
challenges like DDoS attacks and legitimate traffic with similar characteristics.
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