IEEE Copyright Notice

(© 2007 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

Introducing QoS mechanisms into the
IPsec packet processing

Lars Volker
Institute of Telematics
Universitit Karlsruhe (TH)
Karlsruhe, Germany

Abstract— The deployment and use of IPsec has consistently
increased in recent years. IPsec is a protocol that allows, besides
other things, secure branch offices connectivity and secure VPN
access for road warriors. The limitations of IPsec are much better
understood today, and efforts to improve IPsec are still underway.
One aspect of improvement is the integration of IPsec with other
functions and protocols of the network. Quality of Service (QoS)
is one example. QoS is used to prioritize demanding traffic like
Voice over IP, network control messages, and traffic for other
mission-critical systems. QoS can be used to mitigate risks of
DoS attacks, ill-behaving hosts, and other attacks by separating
traffic classes and treating packets according to the respective
class. In order to facilitate all the advantages QoS can offer, an
IPsec implementation must not only be superficially changed, but
needs thorough modifications or, even better, should be designed
with QoS support as an objective. The current IPsec standard
does hardly offer any guidance to do this. In this paper, we
detail our QoS-capable IPsec and compare it with a widely-used
regular IPsec implementation. Furthermore, we show that these
QoS extensions prove to be valuable, even in difficult scenarios,
e.g. using host CPUs for packet processing.

I. INTRODUCTION

IPsec is the current protocol of choice in the Internet if a
flexible and comprehensive security solution is needed. When
securely connecting two networks, it allows to tunnel packets
from one network to another in a secure fashion. When giving
access to Road-Warriors it is able to support all applications
based on IP.

The current version of [Psec was defined in [1] and imple-
mentations for most current operating systems are available.
However, the standard only offers little advice on QoS: it
only requires the TOS field in the IP header to be copied
during the encapsulation of packets to keep the QoS marking
for the following network hops. Unfortunately, the influence
of the IPsec packet processing on the packets latency and
jitter are not discussed. Therefore, the IPsec developer has
to carefully design and integrate an [Psec implementation into
the operating system in order to achieve QoS.

Nowadays, networks often transport several different kinds
of traffic including real-time and network-control traffic. Traf-
fic generated by applications such as Internet telephony (Voice
over IP), video conferencing, SNMP, SSH, telnet, and other
mission-critical protocols fall into this category. Regular data
traffic often includes HTTP traffic, mail, and other bulk data

tFormer affiliation: Lancaster University, Lancaster, UK.

Marcus Scholler!
NEC Europe Ltd.
Heidelberg, Germany

Martina Zitterbart
Institute of Telematics
Universitit Karlsruhe (TH)
Karlsruhe, Germany

transfers. Networks transporting traffic mixes need particular
methods to ensure that the different traffic classes do not have
a negative impact on each other. For instance, backup traffic
should not interfere with a video conferencing stream. These
goals can be achieved by using Quality of Service (QoS)
mechanisms.

Extending QoS-aware networks with IPsec seems to be
infeasible, considering that most [Psec implementations were
not designed with QoS as an objective, do not differentiate
different packets according to their QoS requirements, and do
introduce latency due to the packet processing. Such imple-
mentations often do not perform very well in QoS scenarios.
A simple approach would be to treat [Psec tunnels as virtual
wires. However, this does not take into account that the
IPsec processing adds latency depending on the packet length,
chosen cryptographic algorithms, current load, and of course
backlog of the incoming IP queue. Since processing times
may vary, additional jitter is introduced. Without means to
differentiate between packets, all aggregates are being treated
equally bad. We show later in this paper that especially in
overload situations the level of jitter is high.

A. Additional advantages

We identified two further aspects of the current IPsec packet
processing as a result of the absence of QoS mechanisms:

« protecting IPsec from denial of service attacks
o fair shared VPN access

Implementing QoS support in an IPsec system does not only
allow the network to better handle a challenging traffic mix,
but it can also minimize the impact of Denial of Service (DoS)
attacks and misconfiguration. Since the IPsec processing speed
of current CPUs is a magnitude slower than current network
technology, IPsec may constitute a bottleneck in the network.
This makes IPsec gateways an easy target for DoS attacks. In
order to close this window of opportunity for the attackers,
packets need to be treated according to their Differentiated
Services classes and must not affect other packets adversely.
It is obvious that marking packets so that an IPsec system
can fulfill the previous requirements is necessary. Treating the
packets accordingly makes it possible to limit the influence
between packets of different classes, and therefore can help
to make DoS attacks against an IPsec system much harder or
even impossible. In detail, an [Psec system may restrict the

amount of resources committed to low priority packets if a
lot of high priority packets have to be processed. The scarcest
resource, CPU cycles, will preferably be used on high priority
packets. Thus important traffic is protected and the amount of
bogus traffic is limited.

When using IPsec to secure access connections like 802.11,
using QoS mechanisms may improve the fairness between
users. Users that do not use the wireless link in a fair way may
reduce its quality of service for other users and they might
not be able to use applications that depend on low latency
(like VoIP) anymore. By integrating QoS mechanisms into the
IPsec processing the problem that IPsec packets cannot be
distinguished by regular QoS mechanisms can be overcome.
Otherwise, IPsec packets could not be dropped nor shaped in
order to improve the overall traffic situation.

B. Related Work

Flexible mapping of connections to QoS classes is required
for a potent system. The IPsec standard [1] requires the
DiffServ Field in the IP header to be copied to the outer IP
header during the encapsulation of packets. For IPv6 packets
transported over IPv4 IPsec tunnels, the Class field is adapted
before inserting it into the IPv4 DiffServ field. Futhermore,
the IETF IPsec working group discussed the idea of mapping
QoS classes to IPsec Security Associations (SAs). This could
allow the IPsec system on the egress site to prioritize packets
even if the TOS field got reset in transit.

The motivation for making IPsec QoS-aware is presented in
[2]. The authors conclude that latency and loss affect real time
traffic over IPsec. [3] describes a scheduler strategy for use in
IPsec systems using hardware accelerators and presents some
first simulation results. This strategy could be implemented in
our system for possible further improvements. An architecture
for QoS and the possibility of using the SPI field in IPsec
headers for classification is presented in [4].

[5] compares the service quality of VoIP and different
security protocols, while [6] discusses performance and quality
improvements due to header size optimizations. These changes
could possibly complement our solutions.

One of the first commercial products understanding the need
for QoS aware IPsec implementations was [7], a hardware-
only IPsec solution that supports the prioritization of real time
data. The hardware crypto unit has a FIFO queue for best effort
traffic an an additional Low Latency Queue (LLQ) for real
time traffic. The LLQ is limited to hardware crypto units only
and must be used in combination with Class Based Weighted
Fair Queueing (CBWFQ).

II. INTRODUCING A SPECIFIC IPSEC IMPLEMENTATION

The IPsec Construction Kit (IPseCK) is an IPsec imple-
mentation for the Linux operating system with focus on a
highly modular and decoupled design. The support of different
cryptographic accelerators and processing mechanisms was a
main design goal from the very beginning on.

In every IPsec implementation the packet processing follows
a simple plan. After matching the packet to a specific Security

Association by using the Security Policy Database (SPD), the
packet will be sent to a cryptographic processing unit, which
in turn encrypts the packet using cryptographic material deliv-
ered by the Security Association Database (SAD). Depending
on the Security Association an ESP or AH header will be
prepended and the Integrity Check Value (ICV) field will be
calculated by a cryptographic unit.

The SPD is a (linear) list of rules specifying selectors to
match the current IP packet and a target security association
for that class of packets. Netfilter and Iptables [8] were chosen
to implement the SPD for [PseCK—providing more than the
needed matching functionality to IPsec. Additional matching
functions can be used to implement IPsec policies for specific
scenarios, like the usage of QoS. They allow the IPsec SPD
to look at headers and fields that the IPsec standard did
not envision. Furthermore, these functions have been tested
exhaustively and provide a good basis for the SPD.

Blocking of IP queues is a highly undesireable behavior
because IPsec processing is time intensive and the forwarding
of non-IPsec packets should be independent of the IPsec
packet processing. This constraint resulted in the architecture
shown in figure 1 which does not block the processing of
non-IPsec packets. The incoming main queue and the outgoing
main queue decouple the Netfilter adapter and [PseCK. Results

are presented in chapter V.
'"”““’@:jj
[
Iy

T
Crypto

Inc. Main

INetitter|— [

\Netfulter\HHHHHHH

LI
Main Out. Crypto

Crypto
Packet Dispatcher Units
Scheduler . .
Cryptographic Processing
Fig. 1. The structure of IPseCK

The packet scheduler looks up the security association
of an IPsec packet in the security association database and
forwards the packet and this information to the Cryptographic
Processing using two similar queues: the incoming crypto
queue and the outgoing crypto queue. Inside the Cryptographic
Processing, the Crypto Dispatcher is located which distributes
packets to one or more cryptographic units (Crypto Units).
These units implement cryptographic and header processing.

The original IPseCK facilitates a pure push architecture.
Packets are pushed through the system to the Crypto Units.
Packets are accumulated in the queue in front of the Crypto
Unit, while the Crypto Unit is busy processing. These queues
are on the right in figure 1.

The Packet Scheduler follows a simple design. In order to
be resource preserving it tries to dequeue the Outgoing Crypto
queue first and the Incoming Main queue afterwards.! Packets
that need processing are sent to the Incoming Crypto queue

IThe order of dequeuing is important. A work preserving system needs a
scheduler which prefers the packets whose processing did already start, so
the processing of these packets can be finished.

and finished packets are sent to the Outgoing Main queue. The
Crypto Units process a packet before returning it to the Packet
Scheduler. This allows processing the packet on different units
with different algorithms. In order to process a complete
Security Association (SA) bundle, a packet has to cycle in
the inner loop for each SA. (Most SA bundles have just
one SA.) The Packet Scheduler also starts the SAD (Security
Association Database) lookup in order to attach the SA meta
data to the packet. The meta data includes cryptographic keys,
initialization vectors, replay windows, and other data needed
to cryptographically process a packet.

The Crypto Dispatchers procedure is slightly more complex
since it has to check if a certain Crypto Unit supports the
algorithm needed for the processing of the packet. Especially
the support of hardware- and software-based packet processing
adds to this complexity since hardware is usually called
asynchronously while software is mostly called synchronously.
With more than one unit in the system, the Crypto Dispatcher
also needs to schedule the packets in order to achieve a high
throughput. During this procedure, it needs to check the SAD
in order to schedule that packet to a certain cryptographic unit.

We used the Linux kernel 2.6 IPsec implementation and
the newly introduced IPseCK implementation to perform our
QoS experiments. The remainder of the paper shows how we
enhanced IPseCK to cope with different QoS requirements.
Finally, the results of this implementation are further compared
to the Linux kernel implementation.

III. DESIGN OF QOS ENHANCEMENTS

Designed and implemented in a modular way, IPseCK can
be augmented with QoS support. The goal was to introduce a
flexible architecture for QoS. This way, adding of a specific
QoS configuration is possible by just loading and configuring
QoS components at runtime.

The main classes of such QoS components are behaviors,
queues, enqueue behaviors, dequeue behaviors, and dequeue
disciplines. A fifo queue, for example, would consist of fifo
enqueue, a fifo queue, and a fifo dequeue. The enqueue
behavior inserts packets into the queue, and the dequeue
behavior gets packets out of the queue, and the fifo queue
is used for storage.

Behaviors include classifiers, meters, shapers, and many
more. These components meter, change, or redirect packets.
Similar to the behaviors are the dequeue disciplines, which
represents strategies of choosing packets from queues. They
include Round Robin, Weighted Fair Queueing and others. A
classifier would select a queue for a packet to be inserted
while a dequeue discipline/scheduler would pick the queue
which should be dequeued next.

When analyzing the IPseCK design, it is obvious that
queues and dispatchers/schedulers can effectively be replaced
with QoS modules. Packets are stored in queues and need
to be prioritized and reordered. Dispatchers and schedulers
make differentiations, which influence timing and order of
packets. Further examination revealed that modifications of
the Packet Scheduler does not significantly help implementing

QoS support in [Psec, whereas the modifications of the Crypto
Dispatcher are indispensable, especially if multiple Crypto
Units are used. The major reason that the Packet Scheduler
cannot significantly contribute in delivering QoS is that its
decision are fairly simple and predictable; the decisions are
orthogonal to QoS. The Packet Scheduler just checks if packets
need more cryptographic processing and puts these packet into
the Incoming Crypto queue. The Crypto Dispatcher, on the
other hand, has to assign the packet to a suitable crypto unit,
so further differentiation between packets needs to be done.
It must also be able to prioritize packets to support priority
traffic flows. The Crypto Dispatcher can control the length
of the queues in front of the Crypto Units, and therefore the
waiting time of already committed packets. This determines
the minimal latency of a packet, since the already committed
packet will be processed first.

Compatible interfaces (section III-A) had to be introduced
into [PseCK which was done for the queues (section III-B)
and the new Crypto Dispatcher (section III-E). Section III-C
explains changes of IPseCK in order to enable the use of QoS
components, while section III-D describes the design of the
IPsec classifier that is used to make a decision based on the
IPsec meta data and IPsec headers of a packet.

A. Connection for QoS modules

In order to allow for a modular and flexible QoS concept,
our design is based on the idea of specific attachment hooks.
Attachment hooks are used to insert a chain of software
components at a given location in the packet processing, thus
allowing to modify the packet processing. These modifications
cannot only be done at startup time but also at runtime
to allow adjustments to the implementation by connecting,
disconnecting, and exchanging QoS modules. An administrator
could, for example, decide that a new QoS class needs to be
integrated into her domain. She could add needed functionality
like a different scheduler, a certain queue type, and queueing
behaviors, while the system can keep running. Thus, not

causing downtime.
{ @
TG

IPseCK with hooks for QoS modules

Fig. 2.

Figure 2 presents the hooks, which were added to our IPsec
implementation. In the figure hooks are represented by white
squares and are differentiated by number. These hooks can
be divided into two categories: hooks to replace queues’ are
presented in section III-B and the hooks to replace policy? in

2The IPsec queues are not necessarily replaced by just simple queues.
The common case is to attach functionality, like rate limiting, shaping,
classification, and one or more queues at the queue hooks.

3These hooks, numbered 5a and 5b are inside the cryptographic scheduler
and can be used to attach different scheduling behaviors.

section III-E.

B. Queue modifications

A feature of the original IPseCK is the ability to easily
exchange queues. Adding flexibility for future requirements
and providing a mechanism to decouple different parts of
the packet processing are results of this decision. In order
to attach QoS components, the queue interface has to be
changed by providing two attachment hooks per queue: one for
enqueuing and one for dequeuing. By attaching components
for classification, enqueuing policy, dequeuing policy, and
storage, a virtual QoS queue emerges that can handle traffic
according to its traffic class.

A sample usage of the new queue hooks is detailed in figure
3. The simple fifo queue is attached to the hooks of the first
queue (labeled with la and 1b). This is basically the simplest
queue configuration and does hardly differ in functionality to
the former Incoming Main Queue, as shown in figure 1. The
only important difference is the limitation of queue length,
which is presented in section III-C.

e MO

A simple queue configuration

Fig. 3.

The creation of the queue hooks requires additional changes:
a function to drop packets and mechanisms to limit the length
of a queue, which are needed for the changes proposed in sec-
tion III-C. The QoS modules cannot drop packets themselves:
packet state is held by IPseCK and cannot be accessed by
the QoS modules. Therefore, the ability to drop is provided
by introducing a new primitive, that QoS components can
send to attachment hooks. When receiving a packet marked
with this drop primitive, the hook will drop the packet for the
component. The queue interface has to be changed to limit the
length of the queues. A length function has to be created in
addition to a blocking call for queuing and dequeuing packets.
These functions permit blocking and non blocking packet
operations which allow for a very flexible implementation.

C. Rate Limitation

One of the modification’s major goals was to limit the
latency of IPsec packets. The latency of an IPsec packet is
basically determined by two factors: the start time of packet
processing and the actual duration of processing. Changes that
can be made to influence the packets processing time are
limited and are discussed in section III-E. However, the start
time of the packet processing can be influenced. The latency
introduced by this is mainly the sum of the packet processing
times of packets which are being processed before the new
packet.

Two different techniques are combined to lower this latency.
The obvious first solution is to limit the length of the queues
used in the system and only admit packet into the system as
long as queue space is left. This effectively introduces an upper
bound of latency and is explained in this section.

The other technique is to rearrange the packet order to
reduce latency of one packet by delaying another. Such a
decision will be made in most cases by scheduling resources
of different traffic classes/flows. Section III-E gives further
details on this.

Reducing jitter and latency of the queues cannot be achieved
by simply limiting the length of the used queues. In fact,
rate limitation has to be applied to every traffic aggregate or
class separately. To achieve this, the incoming queues have
to be replaced by a length limited queue for each aggregate
or class. Also a classifier and dispatcher are needed to assign
packets to their appropriate queue or drop them if this queue is
already full. This access control mechanism allows the system
to limit the packets it accepts. Using length limited queues
instead of just a simple static token bucket allows the system to
automatically self-tune the rate of packets, which are accepted
for a certain aggregate.

An implementation option would be to build this rate limi-
tation outside the IPsec system, instead of the incoming packet
processing. While this could be sufficient in simple scenarios,
it is obvious that in complex system using two different
cryptographic units this can never work effectively, because
no information about the capabilities of different cryptographic
units and their current work load are known. Furthermore, the
classification must be based on IPsec parameters not available
outside the system, for example matching the dynamically
assigned IPsec Security Parameter Index to a QoS class can
not be done without information of the IPsec system.

D. The IPsec Packet Classifier

To enhance IPseCK with QoS components, an option is
needed to differentiate between packets based on IPsec in-
formation. Regular packets are classified considering fields in
the header, but for the classification of IPsec packets certain
headers might not be available because they are encrypted and
other information are not stored in headers at all. The only
traditional source of information would be the Differentiated
Service Code Point field, not allowing to differentiated on
the IPsec processing properties, like cryptographic algorithms
used. In order to gain enough data to classify packets, one can
lookup the Security Association of a packet and the attached
data in the SAD*. This is done by the IPsec classifier.

The new IPsec classifier allows to classify packets according
to matching SAD entries. The important entries are the algo-
rithms and keys used, the index of the SA in the bundle, the
security parameter index (SPI), and the kind of IPsec headers
used.

This classifier can not only work on incoming packets,
which are IPsec protected, but also on outbound packets

4The Security Association Database is used to store cryptographic material
and other meta data for every IPsec security association.

that will be protected with IPsec by this system. A uniform
classification mechanism of IPsec packets is the result.

Adding an IPsec classifier to the QoS components allows
for mapping of QoS classes/aggregates even if packets are
protected. It also allows for a fine-tuned processing of IPsec
packets based on QoS requirements and, if used in conjunction
with a special dispatcher, as presented in section III-E, it even
makes it possible to map packets to cryptographic units based
on QoS requirements.

E. Modular Crypto Dispatcher

In order to allow modifications to the Crypto Dispatcher,
a new dispatcher was built. It internally implements an at-
tachment hook through which packets enter as well as a hook
to pass packets to each crypto unit. It is possible to connect
modules to the hooks and implement specific functionality.
Thus, one can build a dispatcher to meet specific needs.

The dispatcher relies heavily on the classifier implemented
for IPseCK. Without the classifier (see Figure 5 for an exam-
ple) it would not be possible to assign packets based on the
capabilities of the crypto units, thus packets might be assigned
that could not be processed.

Cryp'tb Unit Queues

Netfilter
Netffilter

Fig. 4. A simple dispatcher configuration

A major problem of the dispatcher construction was the
necessity of changing the invocation. The original design
pushed the packets along the processing path into the crypto
units. This behavior is good for reaching a high throughput,
but it reacts adverse during DoS attacks, for example on only
one aggregate. Furthermore, it adds latency depending on
the number of packets already committed to the processing
queue. In order to mitigate the risk of an attack and to better
schedule QoS packets, it is crucial to limit the number of
packets already assigned to a Crypto Unit and hereby allow
for better reactivity. This allows expedited traffic packets to
outrun packets with lower priority. In order to implement
these changes, the crypto unit queues (see figure 4) were
equipped with high and low water marks that can trigger
Crypto Scheduler events. A scheduler can push packets in
these queues if wanted and can also wait for a queue to signal
that it falls below a defined lower threshold.

Figure 4 shows a simple Crypto Dispatcher configuration
that works without QoS. A more complex configuration is
shown in figure 5. Here the dispatcher and the classifier
are combined and service two different aggregates. In order
to distinguish between two aggregates an [Psec classifier is
connected to hook 5a and distributes the packets in two

queues. Packets will be eventually dequeued using hook 5b
and the Round Robin scheduler in front of this hook will be
instructed to dequeue the queues in a round robin manner.
This configuration is the smallest possible configuration to
implement differentiation of service classes.

= FIFO

IPsec RR
FIFO

Netfilter
Netfilter

Fig. 5.

A dispatcher configuration using the IPsec Classifier

IV. IMPLEMENTATION

In the previous chapter, a design to dynamically add QoS
components to an IPsec implementation was presented. Since
a framework of QoS components exists in form of KIDS [9],
these components were reused as much as possible.

Implementing the presented changes in IPseCK required
additional modifications. Components need to be registered
at hooks and deregistered if no longer needed. Therefore, the
queues were replaced by a special fifo queue, which allows
components to replace it by register themselves at the queue’s
hooks. This allows the system to reconfigure the attached
components without interruption of IPsec processing.

The special dispatcher to be used with QoS components
needs a different call semantic. The original design pushed
packets into the dispatcher, which in turn sent the packets
to the crypto unit queues. The new QoS dispatcher needs
a different approach; instead of pushing into the queues,
the cryptographic units now need to send a pull request to
the dispatcher. This was realized by creating a new callback
interface.

Several changes have been made to achieve the three
benefits:

e QoS support
e more resistance to DoS attacks
o fair share between users

The configurations for the benefits do differ in detail.

For these benefits it is important that a limited number
of aggregates is differentiated and treated accordingly. The
incoming main queue and the incoming crypto queue have to
differentiate between the traffic classes and must therefore use
classifiers, different queues, and schedulers. The configuration
of the crypto dispatcher is based on two dimensions: the traffic
aggregates and the number of the crypto units as well as
their configuration. For IPsec systems at the domain edge, rate
limitation and/or shaping needs to be included in addition.

User fairness is especially important because an IPsec
concentrator is a limited resource. When using IPsec to

secure wireless network access, achieving user fairness in the
concentrator will also achieve fairness for the wireless link.
Instead of adding QoS components for each user it is possible
to use components with support for different user profiles.

More DoS resistance is already achieved by implementing
just the decoupling of IPsec and non-IPsec processing. This
will be presented in chapter V. Adding the mechanisms
outlined for user fairness more DoS resistance is achieved.
IPsec users can neither influence non-IPsec users nor other
IPsec users.

A. A sample QoS configuration

In chapter V-B results with different IPsec connections are
presented showing how aggregates can be processed indepen-
dently. The used configuration is very simple and basically
the smallest possible configuration for two aggregates. The
aggregates used are Expedited Forwarding (EF) and Best
Effort (BE). The rate of the BE aggregate is limited inside
the IPsec system, while the packet rate of EF is not limited at
all.

Both incoming queues (incoming main queue and incoming
crypto queue) and the crypto dispatcher must differentiate
between both aggregates and need a classifier each. In ad-
dition fifo queues for storage and the simple round robin
scheduler were used. Alternatively a weighted fair queuing or
strict priority scheduler could be used to select packets. This
configuration is represented by figure 6, which only leaves the
legacy FIFO queues at the outgoing queues 2 and 4.

V. PERFORMANCE RESULTS

Performance and stress tests were conducted to demonstrate
the effects of the proposed improvements. The goal was to
confirm that the improvements solve the problems as stated
before.

The tests were conducted on a set of Linux systems. These
are equipped with 2.8 GHz Pentium 4 CPUs and 2 GB of
RAM each. The onboard Gigabit network interfaces were used
to connect the systems using a Gigabit Switch. Each system is
fast enough to generate about 50-60 Mbit/s of IPsec traffic’.

A. IPsec’s influence on non-IPsec packets

The first stress test focuses on the dependence of IPsec
and regular network processing. In section II, we detailed
that the major goal of the IPseCK system is a decoupled
implementation. The first stress test is supposed to compare
the two approaches. On a well-designed system, the high IPsec
load would not influence the regular packet processing, hence
the measured round-trip time would be the same as without
IPsec.

The setup for the test consists of four systems generating
25Mbit/s of IPsec traffic each, on the right of figure 7.
This traffic is declared as best-effort traffic and does not
have latency requirements. Another system is receiving the
combined load of 100Mbit/s, this is the IPsec gateway in the

SIPsec ESP with 3DES encryption and HMAC-MDS5-96 for authentication
was used.

Senders

IPsec Gateway [

_——
—
0
| —
0
na—
I

L

Probing Node

p———""
I ‘

Ethernet Switch

=4

JddlC

Fig. 7. The setup of the stress tests

top of the figure. Since each system is only able to handle
about 50-60Mbit/s of traffic, the setup results in an overload
situation of this system®, which had to drop packets in such
a situation. The probing system is used to test the reactivity
of the target system, it is depcited on the left side of figure
7. Probing was done by sending unprotected ICMP packets to
the target system, these packets were considered to have a low
latency requirement. We measured using the Linux 2.6 kernel
IPsec implementation and our IPseCK implementation for the
different IPsec nodes.

a
3

—&—Linux IPsec
—— |PseCK

~
a

s
S

@
&

@
S

N
S

roundtrip delay [ms]

time [s]

Fig. 8. Stress test with non-IPsec probes

In figure 8 the round trip times of 100 consecutive probes
are displayed. The dots between 1 and 30 ms are the results
of the test using the Linux 2.6 IPsec implementation. The
squares at the lower end of the graph represent the IPseCK
implementation’s results, which have a much lower latency,
no loss, and just a usual amount of jitter. Testing results are
summarized in table I. Looking at the figure and the table it is
rather obvious that some packet loss and a rather high amount
of jitter occured when using this system.

The Linux 2.6 implementation cannot cope with the high
load of the IPsec system. The system does prioritize neither

%Note that a Gigabit Ethernet network was used in these tests, making sure
that the network does not act as a bottleneck.

Fig. 6.

| RTT min. | RTT avg. | RTT max. | loss |
Linux 2.6 0.2 ms 13.8 ms 28.0 ms | 29%
IPseCK 0.0 ms 0.1 ms 0.2 ms 0%
TABLE I

BENCHMARK WITH NON-IPSEC PROBES

IPsec nor regular traffic and does not decouple the two. This
means that IPsec traffic can have a negative impact on regular
traffic and vice versa. Especially the high amount of jitter is
a result of the queuing strategy used in the kernel, as clearly
seen in figure 8. As soon as the incoming packet queue of the
network stack is full, all incoming packets will be dropped
until this queue is empty again. In the mean time the queue
will be emptied by processing the packets which are still in
the queue.

Just the contrary are the results of the IPseCK implementa-
tion. The decoupling of the non-ipsec and ipsec packets allows
IPseCK to achieve very good results in this scenario. The
latency, jitter, and loss are all close to the possible minimum
values. Best effort IPsec packets do not influence high priority
non-IPsec packets.

The results show that a decoupled system can handle the
combination of high IPsec load and traffic much better. While
the IPseCK system shows the desired behavior, the Linux 2.6
implementation disappoints in this scenario.

B. IPsec’s influence on IPsec packets

IPsec must be able to differentiate between different IPsec
connections and between different traffic streams within a
IPsec connection if QoS and IPsec are to be successfully
combined. The second stress test focuses on the handling of
different traffic aggregates inside IPsec. This should give us
feedback if the modifications to IPsec allow us to offer QoS
inside IPsec.

The setup for this stress test is equivalent to the setup
described in section V-A. The only difference between both se-
tups is that this test uses IPsec protected probe messages. The
probe messages are assigned to an IPsec protected expedited
effort (EF) QoS aggregate and the load traffic to the IPsec best
effort aggregate. This means that the probe messages have a
higher priority than the load traffic.

The configuration used in the benchmarks.

A perfect system should show minimal latency, loss, and
jitter for the probe aggregate by preferring this traffic over
the other traffic. Below are results of the Linux 2.6 kernel
IPsec, our IPseCK, and IPseCK using the required QoS
enhancements.

Figure 9 shows the round trip times of the test probes for
each IPsec implementation. The Linux 2.6 IPsec still produces
a high amount of jitter, loss, and delay. IPseCK also drops
almost 50% of the probes. Its jitter is very low, but the average
delay is higher than the delay of Linux 2.6 IPsec. By reducing
the queue size in the IPsec system or similar tuning, the latency
could be reduced, but this would still not lead to acceptable
results, because loss would still occur.

30 41-

—&— Linux IPsec
—— |PseCK
—4&— |PseCK QoS

3

54k -} - ®- |- #-------- -d-

20 -

o
'

roundtrip delay [ms]

=]

0 10 20 30 40 50 60 70 80 90 100
time [s]

Fig. 9. Stress test with IPsec probes

Only the IPseCK with QoS enhancements produces satisfy-
ing results. Very low delay, jitter, and loss are encountered. In
table II, the exact results are presented. These show that, with
the QoS enhancements, the loss was reduced to 0%, which
was the primary goal. In average the RTT delay was reduced
to only 1.1 ms.

’ H RTT min. | RTT avg. ‘ RTT max. ‘ loss ‘
Linux 2.6 1.0 ms 22.8 ms 462 ms | 52%
IPseCK 44.6 ms 459 ms 47.0 ms | 47%
IPseCK QoS 0.7 ms 1.1 ms 1.6 ms 0%

TABLE 1T

BENCHMARK WITH IPSEC PROBES

The results of this stress test demonstrate that, by using
QoS mechanisms, a good handling of different traffic aggre-
gates can be achieved even when using only software-based
cryptography. This enables the required flexibility for further
applications and reduces the impact of QoS attacks.

VI. APPLYING THE RESULTS TO OTHER IMPLEMENTATIONS

Our results conclude that QoS is achievable with IPsec if
certain conditions are met. A decoupled and flexible IPsec
implementation can much easier be modified to support QoS-
enabled processing than others. For more static implementa-
tions deeper modifications have to be done, which will be
detailed in this section.

Once considering that the cryptographic processing takes up
more time than the other processing steps, like classification,
it is important to optimize the decision of packet assignments
to the cryptographic processing. To do this, classification and
structured queuing is needed. Furthermore, the packets need
to be scheduled to the processing. Different strategies could
be used, a simple priority-based scheduling already achieves
good results in many scenarios.

When an implementation counters an overload situation,
packets need to be dropped so the system does not run out
of queue space. The strategy on how to drop packets is an
important matter. Some implementations, e.g. the Linux 2.6
IPsec, drop all packets until the incoming queue is empty.
This strategy leads to a burst of lost packets and large jitter
in overload situations. Applications like Video Streaming and
VoIP might prefer to have a more distributed drop of packets,
since the used multimedia codecs cope with such situation
much better.

More important than the drop strategy is the place in the
processing to drop packets. The earlier a packet is dropped,
the less work was wasted on the dropped packet. But it is
critical to not drop packets before classification took place,
since important traffic should not be dropped as much as best
effort traffic.

An IPsec implementation should classify packets at the
beginning of the IPsec processing. This should be combined
with rate limitation. The decoupling of IPsec and non-IPsec
processing leads to better DoS-resistance—a property a good
network stack surely tries to achieve.

VII. CONCLUSION AND OUTLOOK

The standard Linux 2.6 Kernel IPsec implementation has an
unacceptable handling of stress situations. A simple flood of
IPsec packets can render the systems useless, since network
control traffic cannot reach the system anymore even if no
IPsec protection for these packets is used.

A better design decouples the processing of IPsec and
regular traffic and allows for a balance between both. An
implementation following such principles—called [PseCK—
is being presented here. Its capability to better cope with DoS
attacks and demanding applications, especially if QoS support
is used, is being shown. These results show that it is possible

to use demanding applications such as VoIP together with
IPsec.

At least the decoupling of IPsec and non-IPsec processing
should be implemented in IPsec implementations. Additional
QoS support is definitely a good improvement for IPsec
implementations.

It is questionable whether a CPU-intense task as IPsec
packet processing should be synchronously coupled with
network processing. We demonstrate that this can lead to
massive problems and this does not even depend on the IPsec
usage scenario. Therefore, we cannot recommend to use such
coupled IPsec implementation in productive systems, since the
possible vulnerability is quite massive and makes it easy for
attackers to mount a DoS attack on the system.

Further work includes a more complete QoS configuration,
including the Assured Forwarding (AF) class and Random
Early Detection (RED). Our current solution is focused on
transporting the packets, while signaling and setting up the
QoS mechanisms for IPsec is left aside; Domain resource
management would be a further improvement.

It should also be investigated, whether the local generation
of IPsec packets makes a difference to forwarding and encap-
sulating packets by IPsec.

ACKNOWLEDGMENT

The authors would like to thank Roland Bless, Michael
Conrad, Stefan Mink, and Christoph Sorge for valuable input
and contributions.

REFERENCES

[1]1 S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Standard), Dec. 2005.

[2] J.Perez, V. Zarate, A. Montes, and C. Garcia, “Quality of Service Analy-
sis of IPSec VPNs for Voice and Video Traffic,” in Telecommunications,
2006. AICT-ICIW °06. International Conference on Internet and Web
Applications and Services/Advanced International Conference on, 19-
25 Feb. 2006, pp. 43-43.

[3] A. Ferrante, V. Piuri, and F. Castanier, “A QoS-enabled packet schedul-
ing algorithm for IPSec multi-accelerator based systems,” in CF '05:
Proceedings of the 2nd conference on Computing frontiers. New York,
NY, USA: ACM Press, 2005, pp. 221-229.

[4] V. Fineberg, “A practical architecture for implementing end-to-end QoS
in an IP network,” Communications Magazine, IEEE, vol. 40, no. 1, pp.
122-130, Jan. 2002.

[5] H. Xiao and P. Zarrella, “Quality effects of wireless VoIP using security
solutions,” in Military Communications Conference, 2004. MILCOM
2004. IEEE, vol. 3, 31 Oct.-3 Nov. 2004, pp. 1352-1357Vol.3.

[6] R. Barbieri, D. Bruschi, and E. Rosti, “Voice over IPsec: analysis
and solutions,” in Computer Security Applications Conference, 2002.
Proceedings. 18th Annual, 9-13 Dec. 2002, pp. 261-270.

[7] Cisco, “Voice and Video Enabled IPSec VPN (V3PN) Solution
Reference Network Design,” http://www.cisco.com/application/pdf/en/
us/guest/netsol/ns241/c649/ccmigration\ -09186a00801ea79¢c.pdf, Jan.
2004.

[8] Netfilter-Group, “The netfilter/iptables project homepage,” Website, http:
/Iwww.netfilter.org/.

[9] K. Wehrle, “An Open Architecture for Evaluating Arbitrary Quality

of Service Mechanisms in Software Routers,” Proceedings of IEEE

International Conference on Networking (ICN 2001), Colmar, France.

Springer, Juli, 2001.

L. Berger and T. OMalley, “RSVP Extensions for IPsec Data Flows,”

RFC 2207 (Standard), Sept. 1997.

[10]

