P2PNS: A Secure Distributed Name Service for P2PSIP

Ingmar Baumgart

Mobile P2P 2008, Hong Kong, China

Universität Karlsruhe (TH) Research University · founded 1825

- Decentralized VoIP (P2PSIP)
- Peer-to-Peer name service (P2PNS)
 - Architecture
 - Two-stage name resolution
- P2PNS security
 - Attacks on nodeID generation
 - Attacks on message forwarding
 - Attacks on DHT layer
- Conclusion

Peer-to-Peer SIP

- What is P2PSIP?
 - Using a peer-to-peer network instead of centralized servers for SIP user registration and location lookup
- Why P2PSIP?
 - Cost reduction (no servers needed)
 - Scalability

- Reliability (No single point of failure, self healing)
- Failover for server-based SIP networks (in emergency cases)
- NAT traversal
- Skype (largest VoIP provider in the world) also uses P2P technologies, but no open standard

3

- Main task in P2PSIP:
 - Resolve AoR to current IP address
- Challenge: Many security issues in a completely decentralized network
- Our approach: Generic distributed name service P2PNS (IETF draft-baumgart-p2psip-p2pns-00)

Peer-to-Peer Name Service (P2PNS)

- Distributed name resolution for:
 - <u>P2PSIP</u>, decentralized DNS, HIP, decentralized IM (XMPP)
- Same task in all scenarios:
 - Resolve a name (AoR, domain name, HIT) to the current transport address (IP, port)
- P2PNS interface:
 - register(name, transport address)
 - resolve(name)
- Name cache on top of KBR/DHT P2P layer
- Focus on security in completely decentralized networks:
 - Unique usernames
 - Prevent identity theft

P2PNS Architecture

- Modular architecture based on Common API:
 - Key Based Routing (KBR)
 - Task: Message routing to nodeIDs
 - Distributed Hash Table (DHT)
 - Task: Distributed data storage
 - Name Cache

EI EMATICS

- Task: Caching of AoRs
- P2PSIP proxy:
 - Connects legacy SIP UAs to the P2PNS service

Key-based Routing (KBR)

- Message routing to nodeIDs
- Provided by structured overlay networks
 - Kademlia, Chord, Koorde, Broose, Pastry
- Main idea:
 - Each node has a nodeID
 - Overlay routing table with nodeIDs of overlay neighbours
 - Efficient lookup of keys and nodeIDs in O(log N)

Distributed Hash Table (DHT)

- Distributed storage of (key, value) tuples
- Uses the KBR layer to determine responsible nodes for data storage
 - Locate a node with a nodeID close to H(key)

DHT security is expensive

- Malicious nodes can modify or delete locally stored data items
- Countermeasure: Replicate data items on k nodes and use majority votes
- → Modifying data items in a DHT is expensive
- DHT usage for P2PSIP
 - Usual approach:
 - ► DHT stores AoR→IP mapping
 - P2PNS approach:
 - Two-stage name resolution based on KBR and DHT services

ELEMATICS

Two-Stage Name Resolution

1.) Resolve AoR \rightarrow NodeID (DHT layer) 2.) Resolve NodeID \rightarrow IP (KBR layer)

Motivation:

- Modification of data records on DHT is expensive (due to security mechanisms)
- (AoR, NodeID) binding is static: No modification needed if IP address changes (ID/Loc split)
- IP address changes are efficiently handled on KBR layer

Example: P2PNS user registration

4. PUT(U, NodelD_X)

Example: P2PNS user lookup

TELEMATICS

P2PNS security threats

Attacks on routing (KBR)

- NodeID generation
 - By carefully choosing a node ID an attacker can control access to target objects
- Message forwarding
 - Malicious nodes along the route between sender and target node can modify or drop messages to a key
- Routing table maintenance
 - DoS attack by distribution of faulty routing table updates
- Attacks on data storage (DHT)
 - Malicious nodes can modify or delete locally stored data items

Attacks on nodelD generation

- Eclipse attack: By carefully choosing a nodeID an attacker can control access to target objects
- Sybil attack: A single node can join the network with several nodeIDs
- Countermeasure:
 - Make nodeID generation expensive
 - Limit free nodeID selection

Secure NodelD generation

Common approach: NodeID = SHA1(IP+port)

- Problems:
 - Sybil attack still possible if an attacker controls several IP addresses
 - Constantly changing nodeIDs on dial-up connections
- Better: NodeID = SHA1(public key)
 - Public key can be used to authenticate node messages
 - Sybil attack and choose of a specific nodeID still feasible
 - Use in combination with crypto puzzles to make creation of new nodeIDs expensive
 - Use a offline CA to generate nodeIDs (if available)

Attacks on message forwarding

 Malicious nodes along the path between sender and target node can modify or drop messages to a key

 $P(lookup success) = 1 - (1 - (1 - m)^{h})^{d}$

- Most important security properties of KBR protocols
 - Average path length h
 - Number of disjoint paths d

Effect of disjoint paths on lookup success

d=8

d=

d=2

d=1

Fraction of successful node lookups

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

0.1

0.2

0.3

ELEMATICS

Fraction of adversarial nodes (N=10000, k=16, s=16) →Even with 25% adversarial nodes 99% lookups succeed in a Kademlia network with 10000 nodes

0.4

0.5

0.6

0.7

0.8

Ingmar Baumgart

0.9

- Data records must only be modified by the owner of a record
 - Modification requests are signed with k_{priv}
- Only store a single record for each key
 - Unique usernames
- Data records are replicated on k nodes
 - Query all replica in parallel and use majority votes
 - Joining nodes pull all replica in their key range

Unmodified SIP UAs

TELEMATICS

- Added P2PNS support to OpenSER SIP proxy
- Overlay Framework OverSim (http://www.oversim.org/)
 - Provides P2PNS service to the P2PSIP proxy

- KBR protocol selection
 - Several promising candidates:
 - Kademlia, Broose, Pastry
 - Focus on low latency and security
- Evaluation of DHT replication strategies
- Standardization
 - Generic P2P protocol
 - Common interface for KBR/DHT service
- Bootstrapping
- NAT traversal

The Overlay Simulation Framework

- P2PNS provides generic name resolution for
 P2PSIP, DNS, Jabber, HIP
- Modular architecture based on Common API
- Focus on security in completely decentralized environments
- Two-stage name resolution reduces communication costs in dynamic networks

Thank you for your attention!

Any questions?

Ingmar Baumgart

P2PNS, MP2P08, Hong Kong, China 22

Institute of Telematics Universität Karlsruhe (TH)

www.tm.uka.de