
Realistic Simulation Environments for IP-based Networks

Thomas Gamer
Institut für Telematik,

Universität Karlsruhe (TH)
Germany

gamer@tm.uka.de

Michael Scharf
Institut für Telematik,

Universität Karlsruhe (TH)
Germany

s_scharf@tm.uka.de

ABSTRACT
During development of new protocols and systems research-
ers in most cases use simulations for evaluation of their prod-
uct, especially in the area of communication networks. The
quality of the simulation environment, however, significantly
influences the quality of a product’s evaluation. Therefore,
simulation environments as realistic as possible are neces-
sary in order to get reliable results. In this paper we present
ReaSE, a tool for creation of such realistic environments.
It considers multiple aspects: topology generation – on AS
level as well as on router level –, traffic patterns, and attack
traffic. Furthermore, ReaSE is based on current state of the
art solutions.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments

General Terms
Simulation Environment

Keywords
Power Law-based AS Topologies, HOT-based Router Topolo-
gies, Traffic Profiles, DDoS Attack Traffic, OMNeT++

1. INTRODUCTION
Most research projects in academic as well as industrial

settings all over the world use simulations in order to eval-
uate their products before publishing or introducing them
into the market. The results of such simulations and thus,
the quality of the according evaluations, too, heavily depend
on the applied simulation environment, e.g. which network
topologies or traffic patterns are used for the simulations. If
the topology used, for example, is too small or does not re-
produce the characteristics of real-world topologies, the de-
veloped product may fail after deployment in real networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2008 March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

in spite of promising results achieved in preceding simula-
tions. Traffic patterns are another important aspect in re-
gard to network simulations, e.g. if an intrusion detection
system has to be evaluated reliable results heavily depend on
realistic background as well as attack traffic provided within
the simulations.

OMNeT++ [17] is one of the most popular simulators in
the research area of communication networks. It is based
on the simulation of discrete events. Additionally, it of-
fers a lot of extensions for specialized areas, e.g. the INET
framework [1] that supports simulation of the Internet, i.e.
MAC, IP, and transport layer, or the mobility framework [2]
that enables simulation of mobile ad-hoc networks. Amongst
others, OMNeT++ is used to evaluate new networking pro-
tocols, mechanisms and algorithms in large networks since
a prototypic deployment of such research products in large
testbeds or in real networks in most cases is too complex
and too costly.

In order to perform an evaluation based on a network
simulator a simulation environment is required that defines
the basic conditions of the simulation. Keeping the research
area of communication systems in mind, a simulation envi-
ronment must define the topology of the simulated network
as well as traffic patterns of simulated hosts. Additionally –
since in real networks malicious nodes and nodes that tem-
porarily misbehave exist – it should be possible to define
existence and characteristics of simulated attack traffic, too.
The creation of realistic and complex simulation environ-
ments should be easy and repeatable. Furthermore, this
process should be done automatically and include each as-
pect of simulation environments into one tool in order to
save time and avoid errors. This also ensures that the re-
sults of different research activities can be compared with
each other due to the same simulation premises.

There are existing tools like BRITE [11], Inet [21], or
DDoSSim [9] as well as different traffic generators that can
be used in order to generate simulation environments. Inet
and BRITE, however, are only able to generate topologies.
DDoSSim primarily details generation of DDoS attack traf-
fic. Generation of normal traffic patterns is not explained.
Traffic generators in most cases focus only on generation of
normal traffic patterns but do not regard attack traffic or
topology creation. In summary, most tools do not consider
all previously mentioned aspects of a simulation environ-
ment. Furthermore, most available tools are not able to
generate a realistic simulation environment since they apply
outdated assumptions or too much simplifications. There-
fore, we present in this paper ReaSE – a tool that creates

simulation environments as realistic as possible based on cur-
rent state of the art solutions.

The rest of this paper is structured as follows: section 2
details how simulation environments for OMNeT++ are set
up in case of Internet simulations. Section 3 then describes
the applied methods for generation of topologies, traffic pat-
terns, and attack traffic. Additionally, implementation de-
tails are given and we verify that the resulting environments
really show the intended characteristics. Related work is de-
scribed in the respective subsections. Finally, section 4 gives
a conclusion and outlook to future work.

2. HOW TO SET UP AN OMNET++ SIMU-
LATION

A simulation in OMNeT++ is realized based on hierar-
chically structured modules that contain the simulation’s
main functionality. These modules then are executed by
the OMNeT++ simulation kernel. So called simple modules
combine one or more C++ classes that realize the actual
functionality, e.g. the implementation of the IP protocol. A
compound module enables the aggregation of multiple simple
modules and therefore, defines the contained simple mod-
ules as well as their interconnections with each other. Thus,
it is possible to define a compound module that realizes the
complete functionality of a standard host system or a router.
Compound modules themselves then can be interconnected
with other modules by incoming and outgoing gates that
specify a so called channel. Such a channel, in turn, can
possess a certain bandwidth and packet delay.

At least two files are necessary for configuration of an
OMNeT++ simulation: the file omnetpp.ini specifies some
global parameters, e.g. which module actually starts the
simulation. NED files (*.ned), on the other hand, describe
the simulated network and the modules used. Each module
defines its gates, parameters, and submodules in a separate
NED file. A global NED file finally specifies the intercon-
nection of these modules that form the simulated network.

ethernetLine

Router

StandardHost

StandardHost

ethernetLine

module MyNetwork

[General]
...
network = MyNetwork

[CmdEnv]
...

[Parameters]
#module parameter
...

omnetpp.ini

channel ethernetLine
delay 0.1 us
datarate 10*1e6

endchannel

module MyNetwork
submodules:
client1: StandardHost;
client2: StandardHost;
router: Router;

connections:
client1.out++ � ethernetLine � router.in++;
client1.in++ � ethernetLine � router.out++;
client2.out++ � ethernetLine � router.in++;
client2.in++ � ethernetLine � router.out++;

endmodule

network myNetwork: MyNetwork
endnetwork

MyNetwork.ned

Router.ned

module Router
parameters:

....
gates:

in: in[];
out: out[];

submodules:
networkLayer: NetworkLayer;
routingTabel: RoutingTable;
...

connections:
...

endmodule

Figure 1: An exemplary simulation setup for
OMNeT++

Figure 1 shows an example of the files necessary for an
OMNeT++ simulation. The exemplary scenario consists of
three nodes: one router and two standard hosts that are
interconnected by channels. The file omnetpp.ini specifies

the starting module MyNetwork. This compound module is
defined in the NED file MyNetwork.ned and consists of a
channel definition, contained submodules and interconnec-
tions between these submodules. The submodules them-
selves are defined in separate NED files. The compound
module Router, for example, consists of the modules Net-

workLayer and RoutingTable as well as some gates and in-
terconnections of these submodules.

A very popular simulation model for OMNeT++ is the
INET framework [1]. It is used to simulate Internet-specific
networks that use the MAC, IP, and transport layer of the
TCP/IP stack and therefore, it implements these layers for
usage within OMNeT++ into simple modules. Further-
more, it provides the compound modules StandardHost and
Router which aggregate functionalities of end and interme-
diate systems, respectively.

3. SIMULATION ENVIRONMENT
In the following the three aspects of simulation environ-

ments identified in section 1 are described in more detail.
First the generation of realistic topologies is detailed. This
aspect in turn is divided into two parts due to the hierar-
chical structure of the Internet. The AS level topology, on
the one hand, (see section 3.1) focuses on the connection of
multiple separate administrative domains, the Autonomous
Systems (AS). On the other hand, the router level topol-
ogy of each AS (see section 3.2) has to be generated, too.
The further aspects are generation of realistic traffic pat-
terns consisting of multiple client/server-based traffic flows
(see section 3.3) and attack traffic caused by DDoS attacks
as well as worm propagations (see section 3.4).

3.1 AS Level Topology
In order to generate realistic AS level topologies there are

two possible approaches: based on real observations, e.g.
BGP routing data, or using a random topology generator.
The first approach generates a very realistic topology based
on a single snapshot that is based on real observations at a
certain time, e.g. collected by the Routeviews project [12].
A drawback of this approach is that it is difficult to get all
the necessary data and to evaluate the huge amount of data
for only one simulation environment. Another problem is
imposed by the fact that real topologies and BGP routing
data are changing now and then and thus, simulation envi-
ronments must be recreated repeatedly. Thus, we decided
to make use of the topology generation method, since in this
way it is possible to easily create multiple realistic topologies
for evaluation.

Currently, the research community relies on random topolo-
gies whose graphs show a power-law distribution in node
degree. This means that most nodes have only few edges
whereas few nodes have lots of edges. The existing topology
generators BRITE and Inet are based on these assumptions,
too. This means that both BRITE and Inet are able to
create AS level topologies that show a power-law distribu-
tion in node degree and thus, highly resemble real networks.
BRITE, however, is not maintained any more but can be
used for creation of AS level topologies in combination with
the BRITE plugin [18] that exports topologies into the NED
file format of OMNeT++. Inet may be used for creation of
AS level topologies but does not offer a possibility to gener-
ate according router level topologies afterwards.

Therefore, we implemented a new topology generator into

ReaSE that is based on the positive-feedback preference
model (PFP) [24]. This is an iterative growth model that
creates topologies with power-law distributed node degree
randomly. It starts with three meshed nodes and iteratively
adds another node and two or three edges randomly until a
given number of nodes is reached. The correctness of this
algorithm is proved by the authors. Furthermore, the rich
club feature [23], i.e. nodes with high degree are frequently
connected with other high-degree nodes, is considered in this
algorithm, too. After topology creation we, finally, classify
each Autonomous System as either stub AS or transit AS in
a way that complete reachability of each AS is ensured by
crossing transit systems only.

3.1.1 Implementation and Evaluation
The process of AS topology generation takes an XML-

based configuration file as input. Based on given parame-
ters like the number of Autonomous Systems to generate or
values for some parameters of the PFP model ReaSE cre-
ates a single NED file. This defines the required number of
Autonomous Systems and their interconnections according
to the topology generated by the PFP model. Each transit
and stub AS is included into the compound module Inter-

net, which actually starts the simulation. Additionally, each
AS may contain its own router level topology. The chan-
nels between different Autonomous Systems are assigned a
constant bandwidth that may differ between transit/transit,
stub/transit, and stub/stub interconnections. Two transit
AS, for example, currently are connected with a bandwidth
of 10Gbit/s. Furthermore, the delay of each channel gets a
fixed value of 1ms. This means that the delay with ReaSE
currently does not depend on a node’s geographic position.

In order to verify correctness of our implementation we
created multiple AS level topologies consisting of 10 000 Auto-
nomous Systems and compared the three power-law val-
ues [8] of the resulting topologies with values of some refer-
ence topologies [16]. This comparison resulted in a correla-
tion value of 0.99 and thus, shows that our AS level topology
generation works correctly.

3.2 Router Level Topology
On router level the generation of realistic topologies based

on real observations is even more difficult than on AS level
due to the concerns of commercial ISPs that publishing their
topology data will reveal information about their customers.
Thus, on router level we again decided to use random topol-
ogy generators in order to get multiple and different realistic
topologies for evaluation. The evolution in case of router
level topologies ranges from random graph models [19] over
approaches that guarantee certain non-random design prin-
ciples that are in common use [22] to the already mentioned
power-law distribution in node degree. BRITE applies the
latter approach, Inet does not generate a router level topol-
ogy at all.

In [10] the authors claim that these approaches are out-
dated and they propose a heuristically optimal topology
(HOT) approach for generating realistic router level topolo-
gies. Their approach is based on the assumption that topol-
ogy creation within an AS must regard not only power-law
distributions but market demands, link costs and hardware
constraints, too. This results in a hierarchical topology con-
sisting of few meshed core nodes with low node degree that
forward aggregated traffic of a high number of gateway nodes

with high node degree. Edge nodes with a node degree of 1
that connect host systems to the Internet complete the hier-
archical topology (see figure 2). In summary link bandwidth
increases from edge to core whereas connectivity decreases.
BRITE, however, does not regard these additional require-
ments imposed by real networks but only generates random
topologies with power-law distribution in node degree.C o r e G a t e w a y E d g e

Figure 2: Hierarchy of router level topology

3.2.1 Implementation
Based on the NED file created during AS topology gener-

ation, in a second step each AS is filled with independently
created HOT router level topologies of varying sizes. There-
fore, each node of the router level topology is realized ei-
ther by the module Router or StandardHost of the INET
framework (see section 2). The differentiation between dif-
ferent node types, e.g. core and gateway routers, is achieved
by assigning different link bandwidths, e.g. to core/core or
core/gateway channels. Between core routers, for example,
currently a bandwidth of 2.5Gbit/s is used whereas only
768 kbit/s are used between host systems and edge routers.
The values that actually are used during creation of router
level topologies, e.g. the number of routers per topology
or the different link bandwidth values, can be specified in
a XML-based configuration file. Thus, arbitrary realistic
topologies can be created for OMNeT++ simulations easily.

3.3 Traffic Generation
Having created a suitable topology realistic traffic pat-

terns between simulated hosts have to be generated in or-
der to get meaningful evaluation results. Realistic in this
case means that the generated traffic shows self-similar be-
havior [4] and is based on a reasonable mixture of different
kinds of traffic. Multiple traffic generators currently exist,
e.g. BonnTraffic [15], TrafGen [5], or D-ITG [3]. BonnTraf-
fic is a simulator-independent traffic generator that needs
an exporter for each specified simulator. An exporter for
NS-2 is already included, for OMNeT++ no exporter seems
to exist currently. TrafGen focuses on traffic generation for
OMNeT++. Both tools, however, define the parameters of
certain traffic flows between a client and a server. Since the
endpoints of each flow have to be configured manually there
is a huge configuration overhead for simulations including
thousands of nodes. D-ITG is an example for a traffic gen-
erator that creates real traffic on real systems and is not
built for use with simulators.

One possibility to achieve self-similar traffic behavior is
to superpose multiple traffic sources that are switched on
and off based on heavy-tailed intervals [20]. Another pos-

sibility is to use heavy-tailed packet sizes for different traf-
fic flows [14]. In our implementation we used both mecha-
nisms heavy-tailed ON/OFF intervals as well as heavy-tailed
packet sizes to ensure self-similar behavior. In order to en-
sure that a reasonable mixture of different protocols is used
during simulations we defined – according to [13] – eight
different traffic profiles which are based on varying trans-
port protocols: TCP, UDP, and ICMP. Table 1 shows these
profiles as well as their according transport protocols and
selection probabilities.

Table 1: Traffic profiles currently used with ReaSE

Traffic profile Transport Selection
label protocol probability

Backup traffic TCP 1.57
Interactive traffic TCP 4.71
Web traffic TCP 11.52
Mail traffic TCP 4.19
Nameserver traffic UDP 56.54
Streaming traffic UDP 1.05
Misc traffic UDP 14.14
Ping traffic ICMP 6.28

All host systems defined by the router level topology are
divided into two categories before starting a simulation: client
and server systems. Client systems repeatedly start a new
traffic flow consisting of multiple ON/OFF intervals by ran-
domly selecting one of the available traffic profiles depending
on their selection probability (see table 1). Then, the traf-
fic profile randomly decides if this traffic flow is destined
for a server system within the client’s AS or beyond the
AS boundaries. Afterwards, the client actively sends traffic
according to the traffic profile to the selected server. The
parameters for request and reply packet lengths as well as
ON/OFF intervals – given in a XML-based configuration file
(see figure 3 for an exemplary cutout) – serve as initialization
values for a pareto distribution, i.e., a certain heavy-tailed
distribution. Servers, in contrast to clients, are passive en-
tities that just answer the requests of clients according to
their specific role.

<Profile>
<Id>0</Id>
<Label>Backup Traffic</Label>
<RequestLength>10000</RequestLength>
<RequestsPerFlow>100</RequestsPerFlow>
<ReplyLength>100</ReplyLength>
<ReplyPerRequest>1</ReplyPerRequest>
<TimeBetweenRequests>0.01</TimeBetweenRequests>
<TimeToRespond>0.1</TimeToRespond>
<TimeBetweenFlow>5.0</TimeBetweenFlow>
<SelectionProbability>15</SelectionProbability>
<WANProbability>33</WANProbability>

</Profile>

Figure 3: Exemplary traffic profile – Backup traffic

Thus, by using such traffic profiles we provide an easily
configurable and extensible way of generating traffic pat-
terns while additionally ensuring that the resulting aggre-
gated traffic shows self-similar behavior.

3.3.1 Implementation and Evaluation
In a first step the differentiation of the router level topolo-

gies’ host systems into clients and servers has to be realized.
This is achieved by redefining all StandardHosts of the NED
file, which contains the topology, according to their new role.
Clients are represented by the module InetUserHost, servers
e.g. by the modules WebServer or NameServer. Different
server roles identify the support for certain traffic profiles
and transport protocols. A WebServer, for example, is only
able to respond to requests of the traffic profile Web traffic,
which is based on TCP (see table 1).T r a f f i cP r o f i l eM a n a g e r H i e r a r c h i c a lN e t w o r kC o n f i g u r a t o rG l o b a lC o n n e c t i o nM a n a g e rT r a f f i c p r o f i l e< x m l >

I n e t U s e r H o s tA S - s p e c i f i cC o n n e c t i o nM a n a g e rW e b S e r v e rS A S 1
T A S 1

Figure 4: Small exemplary simulation environment

In order to support generation of realistic traffic patterns
we had to extend the INET framework of OMNeT++ by ad-
ditional modules: the HierarchicalNetworkConfigurator,
the TrafficProfileManager, and a global as well as local
ConnectionManagers per AS. Figure 4 shows a very small
simulation environment containing all these new modules.
Additionally, the given stub AS SAS 1 contains two host sys-
tems – one client and one server – as well as two routers.

At simulation startup the simple module Hierarchical-

NetworkConfigurator assigns unique IP addresses to all
nodes of the topology. Currently, ReaSE assigns a \16 pre-
fix to each Autonomous System of the AS level topology, i.e.
each AS may contain up to 65 536 router level nodes. Then,
the HierarchicalNetworkConfigurator creates static
routes within each AS as well as between different Autono-
mous Systems based on shortest paths between source and
destination. On AS level the role of each AS is additionally
regarded. This means that only transit AS forward traffic.
A stub AS, on the other hand, may only appear at the be-
ginning or at the end of a routing path. Afterwards, the
simple module TrafficProfileManager reads all available
traffic profiles from a XML-based configuration file. Finally,
every server module has to register its IP address and its role
with the local ConnectionManager of the AS the node be-
longs to. The local ConnectionManagers in turn register at
the global ConnectionManager. All these actions that have
to be performed before the simulation actually can start are
marked with red dashed arrows in figures 4 and 5.

Figure 5 shows the procedure of a client starting a new
traffic flow. Having completed simulation startup the client
– represented by the module InetUserHost – has to select
a traffic profile for its first traffic flow. Therefore, it asks
the AS-specific ConnectionManager for a server address and
a traffic profile using the method getServer. The Con-

I n e t U s e r H o s t C o n n e c t i o n M a n a g e r T r a f f i c P r o f i l e M a n a g e rW e b S e r v e r r e a dt r a f f i cp r o f i l e sr e g i s t e r W e b S e r v e rg e t S e r v e r c h o o s e r a n d o m p r o f i l ec h o o s e r a n d o ms e r v e rt r a f f i c p r o f i l ea n d s e r v e r a d d r e s st r a f f i c f l o w. . .g e t S e r v e r
Si mul ati on st art -up
Si mul ati on runti me
Figure 5: Procedure of traffic profile selection

nectionManager then requests a traffic profile at the Traf-

ficProfileManager, which manages all available traffic pro-
files. This module randomly selects a traffic profile based
on the given selection probabilities. Additionally, it de-
cides if the traffic flow takes place between the client and
a server within the client’s AS or beyond the AS bound-
aries. This decision is taken based on the profile’s WAN
selection probability (see figure 3). Finally, the TrafficPro-
fileManager transmits the selected traffic profile to the AS-
specific ConnectionManager. In our example the traffic pro-
file Web traffic was randomly selected and the communica-
tion takes place between the client and a web server within
the client’s AS.

If the traffic flow takes place with a server within the
client’s AS the ConnectionManager randomly selects one of
the registered servers and communicates the selected traf-
fic profile and server address to the client. Afterwards, the
traffic flow is started based on the parameters of this traf-
fic profile. If the communication, however, takes place with
a server in another AS the AS-specific ConnectionManager

has to request a server address at the global ConnectionMan-
ager. This module then forwards the request to an arbitrary
AS-specific ConnectionManager that selects an appropriate
server within its AS. Finally, the server address is trans-
mitted to the client’s AS-specific ConnectionManager that,
in turn, communicates this address as well as the selected
traffic profile to the client. As soon as the traffic flow is
completed the selection procedure is started again.

In order to verify the existence of self-similarity in the
resulting traffic we conducted multiple OMNeT++ simula-
tions based on a topology with 90 000 hosts within 30 Auto-
nomous Systems using 8 traffic profiles. We observed the
packet counts of about 1 000 randomly selected routers –
900 edges, 80 gateways, and 30 core routers – and calculated
the Hurst value based on the method of m-aggregated vari-
ances for different interval durations (see table 2). Figure 6
additionally shows traffic, which looks self-similar, that is
recorded at a randomly selected gateway router. In table 2
we can see that the Hurst value is significantly greater than
0.5 in nearly all cases. This means that the traffic generated
with ReaSE really shows self-similar behavior.

3.4 Addition of Attack Traffic
If real networks should be simulated traffic patterns as

previously described are not enough since these are based
on the assumption that all nodes behave correctly. Further-

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

p
a

c
k
e

t
c
o

u
n

t

time [seconds]

Figure 6: Traffic at gateway router

Table 2: Hurst value for different node types

node type interval average std dev
Edge 100ms 0.7414 0.095
Edge 1s 0.7128 0.079
Gateway 100ms 0,8934 0.0814
Gateway 1s 0.8645 0.0675
Core 100ms 0.9610 0.0593
Core 1s 0.9475 0.0480

more, if systems for attack prevention, detection, or reaction
are evaluated not only misbehaving but also malicious nodes
are needed. Therefore, we extended our traffic generation by
a further aspect: realistic attack traffic. DDoSSim has the
same intention but neither a detailed description nor the im-
plementation itself is freely available. Thus, we decided to
extend the INET framework of OMNeT++ by some further
modules that enable the simulation of genuine DDoS attacks
and worm propagations.

3.4.1 DDoS Attacks
In order to simulate distributed denial-of-service (DDoS)

attacks we integrated a real tool for conducting such attacks:
the Tribe Flood Network [6]. By integrating this DDoS tool
our attack traffic reproduces the specific characteristics of
DDoS attacks, e.g. ramp-up behavior at the beginning of
an attack or multiple attack waves. Each attacking sys-
tem – a so called zombie – can, however, only take part
in a single attack at the same time. In order to generate
such DDoS attack traffic certain configuration parameters,
e.g. the number of attacking systems, the number of attack
waves, the starting times of the attacks, and the victim ad-
dress, must be given. These parameters are specified in the
file omnetpp.ini.

Before being able to actually start a simulation the zom-
bie systems have to be distributed within the already cre-
ated network specified in the NED file. ReaSE performs a
random distribution by replacing randomly selected client
systems with zombie systems. This is realized by redefining
these randomly selected clients from InetUserHost to DDoS-

Zombie within the existing NED file. The module DDoSZom-

bie is realized as compound module that contains the simple
module TribeFloodNetwork as well as some other modules
provided by the INET framework that are necessary to ac-
complish the complete functionality of an attacking system,
e.g. a network layer and a routing table. The simple module
TribeFloodNetwork implements the actual functionality of
creating attack packets according to the configuration pa-
rameters. These packets then are sent directly on IP layer
of the INET framework. Thus, the raw socket that is used
by the real attack tool is replicated.

DDoS attacks in most cases are based on the fact that
some resources like memory or link bandwidth at a victim
system can be overloaded by the attack traffic and then,
certain services offered by the victim are not available any
more. This means, that a host system may only support a
limited number of TCP connections or that a router must
have limited packet queues in order to achieve overload sit-
uations caused by flooding attacks like DDoS. Most network
simulators including OMNeT++, however, do not provide
the possibility to simulate such overload situations of simu-
lated nodes. Therefore, we had to do some changes in the
INET framework of OMNeT++. First, we modified the
INET TCP implementation in a way that only a limited
number of TCP connections is supported. Additionally, we
had to change the TCP state machine in a way that a single
TCP SYN packet does not create connection state that is
stored till the end of the simulation but only for a certain
time if no further TCP packet for this connection is received.
This ensures that new connections can be accepted after a
certain time period.

Figure 7 shows traffic at the victim host of a TCP SYN
flooding attack [7]. It is obvious that the number of in-
coming TCP SYN packets is not limited but the number of
outgoing TCP SYN/ACK packets – and thus, the number
of connection states that can be stored at a host system –
actually is limited, in this example to 250. This causes an
overload situation at the victim. Another example for over-
load situations are limited packet queues of routers that lead
to packet drops during overload.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

p
a

c
k
e

t
c
o

u
n

t

interval index

TCP SYN packets
TCP SYN/ACK packets

Figure 7: Traffic at a DDoS victim host

3.4.2 Worm propagations
In case of worm propagations we implemented two dif-

ferent alternatives: the first one is based on UDP, the lat-

ter on TCP. Both alternatives are based on a rather simple
probing mechanism that was, for example, used with Code
Red I [25]. Systems that are infected by a worm start send-
ing probing packets to other randomly selected hosts. If a
vulnerable host that currently is not infected receives such
a probing packet this host changes its state to infected and
starts sending probing packets to randomly selected hosts
itself. Hosts that are not vulnerable, e.g. because the do
not offer the service that should be infected, respond with
an ICMP port unreachable message to such probing packets
and then, silently discard them. If a probing packet is sent
to an IP address that is not assigned to any host an ICMP
destination unreachable message is created by a router. The
creation of ICMP error messages is provided by the INET
framework.

Before starting a simulation it must be specified which
nodes are infected at simulation startup and which nodes
are vulnerable by probing packets. Therefore, randomly se-
lected clients represented by the module InetUserHost in
the existing NED file are redefined as UDPWormVictim and
TCPWormVictim, respectively. The configuration of worm pa-
rameters, e.g. probing frequency, destination port, or IP
address range for probing packets, again is done in the om-
netpp.ini file. The nodes that are infected at beginning of
the simulation are randomly selected based on an infection
probability, which is specified in the configuration. If, for ex-
ample, 20% of the worm nodes should be infected each node
calculates a random number and decides if it is infected or
just vulnerable based on this number.

4. CONCLUSION AND OUTLOOK
In this paper we presented ReaSE, a tool for creation of

realistic simulation environments for OMNeT++ that con-
siders not only a single aspect of such an environment but
three important aspects: topology generation on both AS
and router level, traffic patterns, and attack traffic. The
creation of such a simulation environment is based on cur-
rent state of the art solutions. Additionally, we verified that
our tool really creates simulation environments showing the
intended characteristics. The tool currently is in an early de-
velopment state but should be published as soon as possible
on http://www.tm.uka.de/∼gamer.

Currently, creation of realistic simulation environments is
based on XML configuration files but we are working on
a graphical user interface that should further simplifie this
task by hiding implementation details from users. Addition-
ally, we aim at further extending two aspects of ReaSE : more
traffic profiles should be integrated, e.g. based on applica-
tion layer traffic. Furthermore, currently only DDoS attack
traffic and worm propagations, which are based on a very
simple probing mechanism, can be generated. Thus, further
attack classes should be added in the future. Finally, we did
not consider routing mechanisms in this work but only used
static, single-path routing. Thus, other mechanisms should
be taken into account, too. Additionally, the currently fixed
delay of channels could be calculated depending on a geo-
graphic position of nodes.

5. REFERENCES
[1] INET Framework.

http://www.omnetpp.org/pmwiki/index.php?
n=Main.INETFramework, Sept. 2007.

[2] Mobility Framework.
http://mobility-fw.sourceforge.net/, Jan. 2007.

[3] S. Avallone, D. Emma, A. Pescap, and G. Ventre. A
Practical Demonstration of Network Traffic
Generation. In Proc. of the 8th IMSA, pages 138–143,
Aug. 2004.

[4] M. E. Crovella and A. Bestavros. Self-similarity in
World Wide Web traffic: evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835–846, Dec. 1997.

[5] I. Dietrich. OMNeT++ Traffic Generator, Sept. 2006.
http://www7.informatik.uni-
erlangen.de/∼isabel/omnet/modules/TrafGen/.

[6] D. Dittrich. The ”Tribe Flood Network” distributed
denial of service attack tool, Oct. 1999.
http://staff.washington.edu/dittrich/misc/tfn.analysis.

[7] W. M. Eddy. Defenses Against TCP SYN Flooding
Attacks. Cisco Internet Protocol Journal, 8(4), Dec.
2006.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the Internet topology.
Computer Communication Review, 29(4):251–262,
1999.

[9] I. V. Kotenko and A. Ulanov. Simulation of Internet
DDoS Attacks and Defense. In Proc. of ISC, pages
327–342, Oct. 2006.

[10] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the
internet’s router-level topology. In Proc. of ACM
SIGCOMM, pages 3–14, Sept. 2004.

[11] A. Medina, I. Matta, and J. Byers. BRITE: A Flexible
Generator of Internet Topologies. Technical Report
2000-005, Boston University, Jan. 2000.

[12] University of Oregon. Route Views Project.
http://www.routeviews.org.

[13] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A first look at modern enterprise
traffic. In Proc. of the Internet Measurement
Conference 2005, pages 15–28. USENIX Association,
Oct. 2005.

[14] K. Park, G. Kim, and M. Crovella. On the relationship
between file sizes, transport protocols, and self-similar

network traffic. In Proc. of International Conference
on Network Protocols, pages 171–180, Oct. 1996.

[15] B. Roemer. BonnTraffic: A modular framework for
generating synthetic traffic for network simulations,
Nov. 2005. http://web.informatik.uni-
bonn.de/IV/bomonet/BonnTraffic.htm.

[16] G. Siganos, M. Faloutsos, P. Faloutsos, and
C. Faloutsos. Power laws and the AS-level Internet
Topology. IEEE/ACM Transactions on Networking,
11(4):514–524, Aug. 2003.

[17] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of European Simulation
Multiconference, June 2001.

[18] A. Varga. OMNeT++ export for BRITE 2.1.
http://www.omnetpp.org/filemgmt/singlefile.php?lid=5,
2003.

[19] B. Waxman. Routing of multipoint connections. IEEE
Journal on Selected Areas in Communications,
6(9):1617–1622, Dec. 1988.

[20] W. Willinger, M. S. Taqqu, R. Sherman, and D. V.
Wilson. Self-similarity through high-variability:
statistical analysis of ethernet LAN traffic at the
source level. In Proc. of ACM SIGCOMM, pages
100–113, Sept. 1995.

[21] J. Winick and S. Jamin. Inet-3.0: Internet Topology
Generator. Technical Report UM-CSE-TR-456-02,
University of Michigan, July 2002.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. Proc. of IEEE INFOCOM,
2:594–602, Mar. 1996.

[23] S. Zhou and R. J. Mondragon. The Rich-Club
Phenomenon In The Internet Topology. IEEE
Communications Letters, 8(3):180–182, Mar. 2004.

[24] S. Zhoua, G. Zhang, G. Zhang, and Z. Zhuge. Towards
a Precise and Complete Internet Topology Generator.
In Proc. of ICCCAS, volume 3, pages 1830–1834, June
2006.

[25] C. Zou, W. Gong, and D. Towsley. Code Red Worm
Propagation Modeling and Analysis. Proc. of the 9th
ACM conference on Computer and communications
security, pages 138–147, Nov. 2002.

