
Universität Karlsruhe (TH)
Institut für Telematik

TELEMATICS TECHNICAL REPORTS

Integrating real world applications

into OMNeT++

Christoph P. Mayer, Thomas Gamer

{mayer,gamer}@tm.uka.de

February, 27th 2008

TM-2008-2

ISSN 1613-849X

http://doc.tm.uka.de/tr/

Institute of Telematics, University of Karlsruhe

Zirkel 2, D-76128 Karlsruhe, Germany



Integrating real world applications into OMNeT++

Christoph P. Mayer
Institut für Telematik

Universität Karlsruhe (TH)
Germany

mayer@tm.uka.de

Thomas Gamer
Institut für Telematik

Universität Karlsruhe (TH)
Germany

gamer@tm.uka.de

ABSTRACT
The discrete event simulator OMNeT++ is nowadays used
for network simulations in the majority of cases. Unfortu-
nately, it is not possible to easily integrate real world net-
working applications into simulation models. This, however,
would enable less complex and more efficient development
and evaluation of real applications, especially of those that
work in a distributed manner, in comparison to an evalu-
ation in real world networks. We therefore present in this
paper approaches to overcome the shortcoming of real world
application simulation in OMNeT++ and discuss problems
and solutions that arise in this context. Our preferred ap-
proach for integrating real applications into simulation mod-
els is based on an encapsulation of real applications as shared
libraries that can be dynamically loaded by OMNeT++ at
runtime.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

General Terms
Application simulation

Keywords
OMNeT++ integration, hardware-in-the-loop, real world
simulation, application model

1. INTRODUCTION
When it comes to network simulation researchers often rely
on the OMNeT++ simulation environment [13]. Due to its
powerful discrete event simulation engine and lots of avail-
able network protocols it is very easy to simulate and eval-
uate networking protocols and applications using e. g. arbi-
trarily large and complex network topologies [5].

The integration of existing real world applications into sim-
ulators like OMNeT++ notably simplifies evaluation and
further development of these applications since topologies,
traffic patterns, and other parameters can be changed eas-
ily within a simulator. This is even more important in case
of distributed applications, e. g. distributed anomaly-based
attack detection [6]. The detection systems in this example
are sparsely distributed on nodes within the network. Spe-
cific information, e. g. statistical traffic distributions which
are locally measured, is communicated between various in-
stances in order to improve detection of adverse events like
distributed denial-of-service attacks or worm propagations.

Thus, such attacks can be detected efficiently and as early
as possible. The behavior of such an application in large
networks and under varying conditions may be more eas-
ily evaluated using a network simulator than a real network.
Thus, an easy integration of real world applications into sim-
ulators should be possible without the need for redesigning
or re-implementing them for the OMNeT++ environment.

If networking protocols are implemented for usage with
OMNeT++ protocol logic typically is integrated into so
called simple modules using C++ code. By combining mul-
tiple simple modules into a compound module it is possible
to implement more complex application logic, too. Thus,
additional client and server applications can be integrated
into the simulation model, e. g. in order to generate realistic
background traffic. Integrating already existing real world
applications into OMNeT++ simulations, however, is not
as easy as implementing new applications specifically for
OMNeT++. Problems arise, for example, if threads are
used in real world applications. In addition to the complex-
ity of actually integrating real world applications, serious
simulation runtime problems may arise. These could result
in time distortion, CPU scheduling issues, and process or
symbol space problems.

Previous work mainly focused on the integration of real
world TCP/IP network stacks into OMNeT++ or other
network simulators [2, 8]. The overlay network simulation
framework OverSim [1] uses socket connections to connect
external applications to the simulation model. We are, how-
ever, not aware of further work that details challenges and
solutions of easily integrating existing real world applica-
tions into OMNeT++.

The rest of the paper is organized as follows: Section 2 fur-
ther motivates the need for integrating real world applica-
tions into OMNeT++. Different approaches for an integra-
tion of such applications – socket connection, source code
integration, and shared library integration – are discussed
and compared in section 3. We consider usage of shared
libraries the best method for integrating real world appli-
cations into a simulation model. Therefore, this method is
presented in more detail in section 4. Additionally, neces-
sary adjustments that have to be made on applications as
well as OMNeT++ are explained in detail. Section 5, then,
details the problems that arise at compile time and runtime
and describes solutions. Finally, section 6 gives a short sum-
mary and an outlook on future work.



2. WHY INTEGRATE?
Evaluating real world applications – especially distributed
applications – based on real networks is a challenging task.
Keeping the previously described example of distributed
anomaly-based attack detection in mind, a real network
must achieve several requirements in order to be usable for
evaluation:

1. A large network is necessary in order to get meaningful
evaluation results.

2. Control over all nodes in the network is needed, e. g.
to deploy the attack detection system or to execute a
distributed denial-of-service attack.

3. A realistic network environment including e. g. a real-
istic topology and realistic background traffic is needed.

These requirements apply to most distributed applications.
Creating a large testbed for evaluation, however, results in
high efforts for deploying necessary applications – attack de-
tection as well as attack execution in our example – on dif-
ferent hosts in the network. Furthermore, building up such
a large network – maybe consisting of hundreds or thou-
sands of nodes – involves high costs for hardware. The need
for different network topologies and varying network condi-
tions additionally increases the expenses and administrative
efforts. Furthermore, clients – and possibly human users –
and servers have to be deployed in the network in order to
create realistic background traffic.

Another possibility is to use an existing large network for
evaluation of real world applications, e. g. PlanetLab [9]
which provides control over the nodes. This ensure that no
additional hardware has to be deployed and thus, reduces
costs significantly. If such a network, however, is used it
must be ensured that the evaluation does not disrupt nor-
mal network operation and that failure or malfunction of the
network does not bias evaluation results. Therefore, such an
operational network can not be used in case of an attack de-
tection system since attacks would disrupt normal network
operation but must be generated explicitly in order to get
meaningful evaluation results.

All of the mentioned requirements can be easily fulfilled
when deploying existing real world applications in a sim-
ulation environment like OMNeT++. Creating arbitrarily
large network topologies is provided by topology generators
like ReaSE [5]. They furthermore allow creation of vary-
ing network topologies. Control over the network is always
given when running simulations, thus the second require-
ment does not impose a problem, too. In order to achieve
a realistic environment self-similar network traffic [16] must
be generated. Additionally, malicious nodes have to be in-
tegrated into the simulaton, e. g. based on the Tribe Flood
Network [4] DDoS tool as shown in [5], which execute DDoS
attacks.

3. INTEGRATION METHODS
There are different approaches that can be used in order
to integrate real world applications into OMNeT++ simula-
tion models. In this section we will describe three techniques

for such an integration: socket connection, source code in-
tegration, and using shared libraries. Additionally, we will
evaluate the complexity and applicability of each suggested
approach.

The socket connection (see section 3.1) is e. g. used by the
OverSim framework [1] in order to connect real world ap-
plications like SIP clients to the simulation model. Direct
source code integration (see section 3.2) is the default way to
integrate protocol and application logic into
OMNeT++ [15]. Using dynamically loadable shared libraries
(see section 3.3) to outsource application code is partially
documented in [14, 15].

3.1 Socket connection
Connecting a real world application to the simulation us-
ing a socket has been implemented e. g. by OverSim and is
documented in the OMNeT++ sockets sample [13]. It re-
quires a simple module acting as proxy within OMNeT++.
This proxy maintains a socket connection with the real world
application. This method often does not imply any source
code changes on the application and thus, is very easy to
implement.

Socket connections can be used if an application has no need
for lower layer protocols but just needs data from applica-
tion layer. Anyway it is also possible to tunnel the whole
network packet including all lower layers over the socket.
In most cases this requires source code adaptations on the
application to support tunneling of network packets. This
means that it is not possible to, e. g., transparently connect
an intrusion detection system (IDS) that uses a Libpcap [7]
interface for packet capture to an OMNeT++ simulation
using a socket connection.

Despite the fact that the integration using a socket connec-
tion is quite easy to perform, it suffers from the following
problems:

1. CPU scheduling issues

2. Synchronization issues

Since an OMNeT++ simulation typically runs as fast as pos-
sible it consumes as much CPU time as possible. This results
in the first problem: The external application may not get
enough CPU time for its own operations and therefore, does
not run smoothly (1). In order to avoid this issue higher
process priorities may be assigned to the real world applica-
tion. This, however, may result in problems for OMNeT++
if traffic sent by the application can not be processed fast
enough and thus, causes the socket connection to break.

OMNeT++, on the one hand, performs a time discrete sim-
ulation in its own time domain: the simulation time. An
application that is connected to a simulation using a socket
connection, on the other hand, runs in its own time domain:
the wall clock time which runs in real time. This causes
time distortion between simulation and real world applica-
tion that leads to inaccurate or even false simulation re-
sults (2). The solution that is implemented by OMNeT++
and OverSim is to use a special simulation scheduler that



slows down the simulation to real time. This causes both
the simulation and the external application to run in the
same time domain, i. e. the wall clock time.

This approach, however, results in further problems that
may bias the simulation results. First of all, the approach
to slow down the simulation is only possible if the simula-
tion is able to run faster than real time. Depending on the
number of modules used in the simulation and on generated
traffic between the hosts in the simulated network this re-
quirement must not taken for granted in all cases. Secondly,
the external application is still not running in a time dis-
crete manner and therefore, may not be synchronized with
the simulation properly. The last drawback of slowing down
the simulation is the extended simulation time: Executing
a simulation that normally runs ten times faster than real
time and provides ten hours of simulation time will end up
running for ten hours real time instead of just one if socket
connections are used for the integration.

3.2 Source code integration
Integrating source code directly into a simulation is the de-
fault approach when evaluating protocols using OMNeT++.
This involves writing simple modules in C++ and compil-
ing them using the OMNeT++ build environment. This
approach enables easy development of protocols and small
applications. Since all code is implemented directly into
OMNeT++ and scheduled by OMNeT++ no time distor-
tion can occur.

The direct source code integration technique suffers from the
following problems that make it difficult to integrate existing
real world applications into OMNeT++:

1. Real world applications consist of multiple source files
and contain dependencies that have to be integrated
into the OMNeT++ build environment.

2. The build environment for the real world application
has to be reconstructed in the OMNeT++ build envi-
ronment. This includes compiler and linker flags.

3. External application dependencies have to be integrated
into the OMNeT++ build environment.

4. Features like timers and threads that are used in real
world applications cannot be seamlessly integrated into
OMNeT++.

Problems (1) to (3) concern the software build environment:
Reconstructing the application’s build environment within
the OMNeT++ build environment involves integrating all
source files and applying all compile and link time switches
that are needed by the real world application. This can re-
sult in incompatibilities and unstable code: Compile time
switches for character set, exception handling and thread-
ing, for example, can result in incompatibilities, break the
build or produce runtime failures. Adding external depen-
dencies into the OMNeT++ build environment (3) can fur-
ther complicate the build or even make it impossible due to
link time incompatibilities between the external dependen-
cies and OMNeT++.

As OMNeT++ pursues a discrete simulation model the use
of threading (4) causes problems (see section 5.1). This is
a general problem that is not only related to the approach
of source code integration. Furthermore, timer mechanisms
must be considered: Total timer functionality has to be em-
ulated by using OMNeT++ self messages (see section 5.2).

3.3 Shared library integration
Another possibility to integrate applications into OMNeT++
is to include binary code. We call this method shared library
integration. It is quite similar to the integration of source
code and involves most of its integration steps. As huge
advantage the Shared library integration avoids the most
challenging problem: project build management.

Whereas the source code integration requires major adap-
tations to the OMNeT++ build environment the approach
of using shared libraries keeps the build environment for the
real world application and OMNeT++ separated in a sound
way. Compile and link time switches as well as external de-
pendencies of the application can be retained. This enables
different compile and link time settings for OMNeT++ and
the real world application. In the majority of cases a real
world application uses compile and link settings that can
not be changed without breaking the application. Thus the
Shared library integration enables the application to pre-
serve its specific settings and integrate into OMNeT++.

Changing the output type of an application to shared library
involves only small adaptations to the application build en-
vironment that can be implemented e. g. using command
line flags for the GNU make build system [12]. This avoids
costly maintenance of multiple project build environments
for the application. Only one application build environment
exists that can be used to build both the native application
and the OMNeT++ compatible shared library.

3.4 Conclusions
The solution using shared libraries includes all advantages of
the direct source code integration but heavily simplifies the
problems regarding management of both OMNeT++ and
real application build environments. The solution based on
socket connections, is the easiest one but shows synchro-
nization problems that may bias simulation results and ad-
ditionally, does only work if simulation speed is faster than
real time. We hence consider the shared library approach
the best choice for the integration of real world applications
into OMNeT++. The rest of the paper will focus on this
integration technique. Section 4 will explain in more de-
tail how to integrate real world applications using shared
libraries. Section 5 finally focuses on emerging problems
and gives solutions.

4. INTEGRATION STEPS
This section focuses on the integration of real world appli-
cations using the shared library approach introduced in sec-
tion 3.3. Section 4.1 will detail on the required adapta-
tions on real world application and OMNeT++. The nec-
essary OMNeT++ NED environment will be explained in
section 4.2.



4.1 Preparing the application
The first step of preparing the real world application for in-
tegration into OMNeT++ involves creating a simple module
using the base OMNeT++ class cSimpleModule. The func-
tionality of the application’s regular main method has to be
encapsulated into this simple module. The actual code of
the main method will be split into the simple modules con-
structor and destructor as well as initialize and finish

methods. An initialization based on multiple stages can
be implemented using the simple module’s numInitStages

method.

As next steo the network abstraction has to be built. Appli-
cations like intrusion detection systems or network analyzers
parse all protocol layers of a packet. Most often such appli-
cations provide their own parsers to access protocol con-
tents. These parse the binary network packet and represent
the contents in a structured and easily accessible way. The
intrusion detection systems Bro [11] and Snort [10], for ex-
ample, employ such structured protocol parsers.

OMNeT++ uses protocol classes that are transmitted within
the simulation model as objects in the simulation process
space. The OMNeT++/INET protocol classes, however,
are different from real binary network data. It is thus not
possible to use the OMNeT++ protocol objects directly for
protocol parsing based on RFC-conform protocol parsers.
Figure 1 compares a binary IP packet format which is RFC-
conform and a binary representation of an IP packet used by
OMNeT++/INET. The binary representation for the OM-
NeT++/INET IP packet was derived from the IPDatagram

message definition in the IPDatagram.msg file. It can be
easily seen that the binary formats are different and that
normal protocol parsers can not be used for both formats.
Thus, it is not possible to transparently operate the original
protocol parsers of the real world application.

Integrating a real world application including the applica-
tion’s original parsers is possible by using an abstraction
layer for the network data. This involves converting the
OMNeT++-specific protocol objects into structures that are
used inside the application. There exist two different ways
to achieve this:

1. Mapping the OMNeT++/INET protocol objects to
application-internal protocol structures.

2. Serializing the OMNeT++/INET protocol objects to
binary format and enable the application to perform
the parsing.

Which approach is chosen depends on the fact whether the
application provides inbuilt protocol parsers or not. If the
encapsulation of the OMNeT++/INET protocol parsers can
be mapped to application-internal protocol parsers it is pos-
sible to develop a conversion layer that converts the OM-
NeT++/INET protocol objects into application-specific pro-
tocol objects (1). The architecture of such an abstraction
layer is shown in figure 2. Care must be taken because OM-
NeT++/INET defines several constants like ICMP type and
code values that are not RFC-conform.

Application Simple module

OMNeT++

cMessage

IPDatagram

TCPSegment

Network abstraction and conversion

Application logic

Frame

IpPacket

TcpPacket

PayloadPacket

Figure 2: Abstraction layer for OMNeT++/INET
protocol representation and application-specific pro-
tocol representation.

If the first approach can not be applied the serialization
functions in OMNeT++/INET can be used to serialize the
protocol objects into a binary Pcap [7] structure (2). This
way a Pcap interface can be emulated that provides generic
access to all network data including all protocol layers for
the real world application. This approach can e. g. be used
when the real world application does not employ protocol
parsers but accesses protocol contents through the use of
simple offsets into the binary packet data.

The packet delivery model in the application may differ
from the event driven approach used in OMNeT++. In an
OMNeT++ simulation packets are delivered through a call-
back function, i. e. in a push-based manner. Network ac-
cess interfaces like Pcap allow pull-based mechanisms to be
used instead. If the application uses a pull-based method
to access network packets additional buffers must be im-
plemented to emulate pull-based network packet access in
OMNeT++.

Already integrated applications that need to communicate
with other nodes in the simulation need adaptations, too.
This is much easier since no protocol parsers or serializ-
ers have to be employed. To enable communication be-
tween nodes in the simulation an abstraction is needed that
allows an application to transparently communicate with
other nodes using e. g. sockets under a native environment
and using the OMNeT++/INET facilities when running a
simulation.

A sound object-oriented design of the real world application
makes integration into OMNeT++ rather seamless. The
modular architecture allows the exchange of e. g. network
access layers for the OMNeT++ environment. This results
in a high level of abstraction and enables the actual appli-
cation functionality to run independently of the underlying
network access methods. Badly designed applications may
require more integration efforts but can be integrated into
OMNeT++ nonetheless using the presented method.



0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Version IHL TOS Total length

Identification Flags Fragment offset

TTL Protocol Header checksum

Source IP address

Destination IP address

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Version IHL

Source IP address

Destination IP address

Protocol

TTL Identification (1)

Identification (2) M

F

D

F
Fragment offset (1)

Fragment offset (2) Diffserv

Figure 1: RFC-conform binary IP format (left) and OMNeT++/INET-based IP format (right)

Table 1: Flags for shared library building

Type Flag Meaning
Compiler -fPIC Generate position-independent

code (PIC) that is needed for
dynamic linking.

Linker -shared Produce a shared object that
can be used to link a shared li-
brary.

Linker -rdynamic Instructs the linker to add all
symbols to the dynamic symbol
table. This is needed if the ap-
plication dynamically loads fur-
ther shared libraries which use
functionality from the applica-
tion shared library.

Linker -o Specify the output filename
for the shared library, e. g.
libmyapp.so

After adapting the source code using the simple module and
building an appropriate network abstraction the application
has to be built as a shared library. This applies only to
the main executable component. Further shared libraries
that are used by the application executable do not need
to be changed. Changing the output type from executable
to shared library needs adjustment of compiler and linker
flags. Table 1 gives an overview of useful flags that may
be necessary for compiling and linking a shared library with
the GNU g++ compiler under Linux. Using a build system
like GNU make [12] enables command line flags that can be
used to select the runtime environment (e. g. native Linux or
OMNeT++) and thus easily adapt the compiler and linker
flags.

4.2 OMNeT++ NED environment
After the application has been prepared as shown in sec-
tion 4.1 the OMNeT++ environment has to be built. The
NED and configuration files for the OMNeT++ simulation
are quite similar to the default approach.

First of all we adapt the omnetpp.ini file. It contains a
[General] section which will be extended to command
OMNeT++ load the application shared library that was
built in section 4.1. In order to achieve this we add the

following entry to the omnetpp.ini file:

[General]

...

load-libs="libmyapp"

...

This instructs OMNeT++ to dynamically load the file
libmyapp.so at startup. This way the simple module that
was defined in section 4.1 is now available for instantiation.
It has to be ensured that the shared library libmyapp.so re-
sides in a location where it can be found for dynamic loading.

The NED files that actually use the simple module look as
if the source code was directly embedded, i. e. there is no
difference to the default way of writing NED files.

5. CHALLENGES
The procedure described in section 4 enables the integrated
application to startup and run within the OMNeT++ sim-
ulation. Nonetheless only simple applications will run with-
out problems at this point. Most often problems will emerge
that require special handling. These problems will be ex-
plained in the next sections and appropriate solutions are
presented. The problems and solutions discussed in this sec-
tions also partly apply to source code integration (see sec-
tion 3.2) and socket connection integration (see section 3.1)
technique.

5.1 Threads
Threading is a direct contradiction to the discrete simulation
approach followed by OMNeT++. A simulation performed
by OMNeT++ is not multi-threaded and thus, implements
no kind of concurrency. In real world applications threads
are commonly used and receive great support by upcom-
ing multicore processors. This results in a huge amount of
software being written based on threads.

In case a multi-threaded application has been integrated as
previously described one or both of the following problems
may occur:

1. Application threads don’t receive enough CPU time
from the operating system scheduler and thus don’t
run smoothly.



2. Access violations occur when a thread tries to access
the OMNeT++ simulation environment.

Threads that only perform little work and then finish are
often not affected by too little CPU time. Such threads
will run correctly and do not need any adaptation in re-
gard to (1). Threads that e. g. wait for processing items
of a queue possibly will run too slow since the OMNeT++
environment consumes all CPU resources. To resolve prob-
lem (1) threads have to be discretized and thus source code
changes need to be applied. The following example will
make this more clear: Consider a thread that waits for items
in a queue to appear. Then it performs some work on all
items until the queue is emptied. Discretizing this thread
can be done by periodically calling a method that processes
all items in the queue. The calling of this method can be
implemented in the OMNeT++ handleMessage method of
the application’s simple module. This way the thread itself
is discretized and processing is triggered by OMNeT++ di-
rectly. As processing time in a simple module is not added
to the simulation time no time distortion can occur.

Another way to solve the CPU scheduling problem (1) is to
adjust thread priorities. In case of shared library integra-
tion OMNeT++ and all application instances are treated as
a single process. This means that it is not possible in this
case to adjust process priorities. It is therefore necessary
to adjust thread priorities. Adapting thread priorities, how-
ever, needs deep knowledge of application code and behavior
as well as interaction of threads. The actual thread priority
adaptations have to be performed based on the application
source code.

The OMNeT++ simulation environment is at any time aware
of the currently active code. Therefore a context pointer is
used that can be manipulated using the class
cContextSwitcher. A thread in the real world application
– which does not necessitate discretization and thus has not
been discretized – that accesses OMNeT++ functionality,
e. g. through the application’s simple module object, is not
marked as active code because it has not been scheduled by
OMNeT++ but by its own thread. Therefore, problems oc-
cur that result in access violations (2) because OMNeT++
is not aware of the active code. To circumvent this problem
the macros Enter_Method and Enter_Method_Silent can be
used before accessing simulation objects like the applications
simple module. They use the class cContextSwitcher men-
tioned before to adjust the context pointer. This way OM-
NeT++ is aware of the currently active code and can handle
message ownership and event scheduling correctly.

5.2 Timing issues
Applications often depend on time-based information, e. g.
for the following functionality:

1. Requests for the current time.

2. Request that the current thread should sleep for a de-
fined time interval.

3. Use of timers that periodically execute a defined call-
back function.

Each of the three features rely on time-based information.
Typically, applications, on the one hand, are executed in the
wall clock time domain. An OMNeT++ simulation model,
on the other hand, is executed in its own time domain: the
simulation time. Hence, occurrence of any feature within an
application needs adaptation to run correctly in the simula-
tion time domain.

The simulation time can be requested by a simple module
using the simTime method. This method returns the simula-
tion time as floating point number with double precision in
seconds. Using preprocessor macros the request for the cur-
rent time (1) can be easily encapsulated and transparently
used by the application:

#ifdef OMNET_SIMULATION

#define CUR_TIME (static_cast<unsigned long> \

(cSimpleModule::simTime()* \

1000.0))

#else

#define CUR_TIME (static_cast<unsigned long> \

(((double)clock())/ \

((double)CLOCKS_PER_SEC))*1000.0)

#endif

This way the application is able to perform time requests
transparently within an OMNeT++ simulation as well as a
normal runtime environment like Linux.

Sleeping the current thread (2) for a defined amount of time
must be done in respect to the simulation time domain.
As the simulation time is not increasing uniformly, sleep-
ing can not be done using a multiplier in respect to the
wall clock time domain. Thus, sleeping mechanisms must
be implemented using OMNeT++ specific features. OM-
NeT++ provides the wait method that simulates speeping
mechanisms using self-messages and can be used by a simple
module. Like the request for the current time the sleeping
mechanism can be encapsulated and made compile time-
dependent. This results in transparent usage of sleeping
mechanisms for the application.

Timers (3) are implemented in OMNeT++ using self mes-
sages. These are messages that are scheduled with a user
defined delay and then sent to the module itself. Periodic
timers can be implemented by rescheduling incoming self
messages. The self message functionality can be used to im-
plement a timer management for the application that can
handle multiple timers transparently. The timer manage-
ment thus is able to handle multiple timers using different
identifiers in the OMNeT++ self message.

5.3 Shared libraries and symbol space
As soon as the application’s shared library is dynamically
loaded by OMNeT++ the runtime environment resolves all
pending symbols. This is performed on a process space-wide
scope. Problems can occur if the application that was loaded
using the shared library in turn loads additional shared li-
braries (e. g. plugins). If plugins rely on functionality of the
base application symbol resolution errors can occur. The
reason for this is that when OMNeT++ loads the applica-
tion’s shared library only symbols are mapped into the sym-



OMNeT++/
INET

Process symbol space

Start
OMNeT++

TCPSegment
UDPPacket
...

Real world 
application

Load
Shared-library

Load
Shared-library

Application
plugin

Insert

Func1
Func2
...

Uses func1,func2

Insert
Use Use

Figure 3: Shared library loading by OMNeT++ and by the integrated application.

bol space that are currently needed and thus, unresolved.
Symbols that are not needed at this moment are discarded
and not mapped into the symbol space. A plugin that may
get dynamically loaded by the application at a later time
may rely on this functionality. Because the functionality has
not been mapped into the symbol space at startup loading
the plugin will fail.

Figure 3 shows an exemplary scenario where OMNeT++
dynamically loads the real world application’s shared library.
All symbols that the real world application depends on, e. g.
TCPSegment, are resolved and thus, can be used by the real
world application. All symbols in the real world application
that are currently needed are resolved, too. All symbols that
are currently not needed are not inserted into the symbol
cache. This results in func1 and func2 not being inserted
into the symbol cache. If the application loads a plugin that
relies on func1 or func2 this functionality – which resides
in the application – is not accessibly by the plugin.

The solution to this problem is quite easy but requires a
change in the OMNeT++ code itself. The OMNeT++ code
for loading shared libraries is located in the file loadlib.h

at include/platdep/. The method opp_loadlibrary uses
the dlopen method to load shared libraries dynamically at
runtime. This method call needs to get extended using the
RTLD_GLOBAL option. Thus, the resulting function call looks
as follows:

dlopen (libfname.c_str(), RTLD_NOW | RTLD_GLOBAL)

This causes all symbols in the application shared library to
be mapped into the symbol space when loaded by
OMNeT++. This includes symbols that are currently not
needed. Thus, symbols that are needed by plugins can be
resolved successfully, even at a later point of time.

Based on the changes described above all symbols in our
example that are available in the real world application are
inserted into the symbol cache and available for later usage
by plugins. This means that func1 and func2 are inserted
into the symbol cache at the time the shared library of the
real world application is loaded. Thus, they are available

during runtime, e. g., when the application loads a plugin
that depends on func1 or func2.

The nonexistence of C++ namespaces in OMNeT++ can
cause further problems that need to be considered. Every
class in the real world application is compiled into a symbol.
This symbol is mapped into the process space and represents
the entry point for the usage of the actual functionality. Two
classes having the same name compete against the symbol
space entry and will swap one another. This results in the
wrong class being instantiated and actually used at runtime.
Function calls on the class will result in the wrong memory
location being executed and fail with access violation errors.
The problem can be resolved by using C++ namespaces in
the real world application or taking care that no class name
in OMNeT++ and the real world application clash.

5.4 Process space issues
When deploying several instances of the same application
on the same machine using e. g. Linux, every instance re-
sides in its own process space. Under an OMNeT++ simula-
tion multiple instantiations of the same application’s simple
module result in the fact that all instances reside in the same
process space. This means that using the real world applica-
tion on several nodes in the simulation network results in all
application instances sharing the same process space. Every
static variable or object is thus shared between all instances.
Therefore, special care is needed if static variables and static
objects like singletons are used.

The shared process space, however, can also have positive ef-
fects on the simulation performance: Shared memory pools,
e. g. by using the Boost Pool Library [3], or the usage of
singleton objects result in smaller overall memory usage and
less CPU time consumption. This may speed up simulation
execution.

6. CONCLUSIONS
Integrating real world applications into a simulation environ-
ment like OMNeT++ enables an evaluation of their behavior
in large simulated networks. Furthermore, it is possible to
design and evaluate the behavior of distributed real world



Table 2: Advantages and disadvantages of discussed integration techniques.

Integration technique Advantages Disadvantages
Socket connection Applications like servers and clients can be

integrated without changes to the application
source code.

CPU and timing issues make this integration
technique unstable, inefficient or even impos-
sible to perform.

Source code integration No CPU or time domain issues, thus no bias.
Straightforward integration method. Easy to
integrate small and simple applications.

Need to reconstruct application build envi-
ronment with OMNeT++. Applications with
special compiler and linker settings can not be
integrated due to incompatibilities with OM-
NeT++. Source code adaptations needed.

Shared library integration All advantages of source code integration.
Avoids problems of build environment and in-
compatibilities.

Source code adaptations needed.

applications more easily and cost-efficient than in real net-
works. We presented several techniques that can be used to
integrate existing real world applications into OMNeT++
and discussed their pros and cons. Focusing on the ap-
proach to use shared libraries for integration we presented
detailed instructions how to realize this solution. Addition-
ally, emerging challenges are explained and solutions are
provided. Table 2 gives a concluding overview of advantages
and disadvantages of the different integration techniques dis-
cussed in this paper.

A well designed network application can be integrated into
OMNeT++ more easily than badly structured code. Any-
way the integration can be time consuming and complex. It
would be desirable to have better support by OMNeT++
for the integration of real world applications. Future work
should focus on OMNeT++ extensions that can easily de-
ploy existing real world applications without the need for
major adaptations on the application side.

7. REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A

Flexible Overlay Network Simulation Framework. In
Proceedings of 10th IEEE Global Internet Symposium
(GI), pages 79–84, May 2007.

[2] R. Bless and M. Doll. Integration of the FreeBSD
TCP/IP Stack into the discrete event simulator
OMNeT++. In Proceedings of the 2004 Winter
Simulation Conference, pages 1556–1561, December
2004.

[3] S. Cleary. Boost Pool Library.
http://www.boost.org/libs/pool, 2000.

[4] D. Dittrich. The ”Tribe Flood Network” distributed
denial of service attack tool.
http://staff.washington.edu/dittrich/misc/tfn.analysis,
October 1999.

[5] T. Gamer and M. Scharf. Realistic Simulation
Environments for IP-based Networks. In Proceedings
of the OMNeT++ Workshop, Marseille, France,
March 2008.

[6] T. Gamer, M. Scharf, and M. Schöller. Collaborative
Anomaly-based Attack Detection. In Proceedings of
IWSOS, pages 280–287. Springer, August 2007.

[7] V. Jacobson, C. Leres, and S. McCanne. Tcpdump
Pcap. http://www.tcpdump.org, 2000.

[8] S. Jansen and A. McGregor. Simulation with real
world network stacks. In Proceedings of the 2005
Winter Simulation Conference, pages 2454–2463,
December 2005.

[9] PlanetLab. PlanetLab: An open platform for
developing, deploying, and accessing planetary-scale
services. http://www.planet-lab.org, 2002.

[10] M. Roesch. Snort. http://www.snort.org, 2001.

[11] R. Sommer. Bro: An Open Source Network Intrusion
Detection System. In Proceedings of the 17.
DFN-Arbeitstagung über Kommunikationsnetze, pages
273–288, June 2003.

[12] R. M. Stallman and R. McGrath. GNU make.
http://www.gnu.org/software/make, 1988.

[13] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proceedings of the European Simulation
Multiconference, pages 319–324, June 2001.

[14] A. Varga. How to extend INET with your own C++
code. http://www.omnetpp.org, June 2005.

[15] A. Varga. OMNeT++ Discrete Event Simulation
System User Manual, 2005. Version 3.2.

[16] W. Willinger, M. S. Taqqu, R. Sherman, and D. V.
Wilson. Self-similarity through high-variability:
statistical analysis of ethernet LAN traffic at the
source level. In Proceedings of ACM SIGCOMM,
pages 100–113, February 1995.


