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Abstract 
With increasing availability of high-speed access links in the private sector, online real-time gaming 

has become a major and still growing segment in terms of market and network impact today. One of 

the most popular games is Unreal Tournament 2004, a fast-paced action game that still ranks within 

the top 10 of the most-played multiplayer Internet-games, according to GameSpy [1].  

Besides high demands in terms of graphical computation, games like Unreal also impose hard 

requirements regarding network packet delay and jitter, for small deterioration in these conditions 

influences gameplay recognizably. To make matters worse, such games generate a very specific 

network traffic with strong requirements in terms of data delivery. In this paper, we analyze the 

network traffic characteristics of Unreal Tournament 2004. The experiments include different aspects 

like variation of map sizes, player count, player behavior as well as hardware and game-specific 

configuration. We show how different operating systems influence network behavior of the game. Our 

work gives a promising picture of how the specific real-time game behaves in terms of network impact 

and may be used as a basis e.g. for the development of specialized traffic generators. 
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1. Introduction 
Since the Internet has advanced to be the most widespread and accessible medium for global 

communication, games always played an important role in its profile of usage. In many parts of the 

world today it is normal to have access to a comparably fast Internet connection, enabling to take part 

in such games. Several classes can be differed, ranging from turn-based or slow-paced interactive  

games to fast-paced real-time representatives. Today, the most relevant game types in terms of 

supporters are the Massively Multiplayer Online Games and First Person Shooters.  Both game types 

proceed in real-time, although they vary in their requirements for fast interaction. While Massively 

Multiplayer Online Games rather tolerate small delays during gameplay, First Person Shooters often 

demand for immediate player reactions (requiring network delays below 100 ms [7]). The high 

popularity of such games leads to a notable fraction of global Internet traffic, typically characterized by 

traffic patterns of many small packets in short intervals. Since data delivery in today’s Internet is 

based on a best effort service, it is desirable for providers to understand such traffic in order to 

improve the network to meet customer’s demands.  

This paper focuses on the network traffic characteristics of Unreal Tournament 2004 (UT), a popular 

First Person Shooter that ranges between the most-played members of that class [1]. By analyzing 
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the traffic generated in various game sessions we characterize the network impact of UT. We 

consider the number of packets, the inter packet times and the payload sizes. It is shown how these 

measures depend on the number of players, the player behavior, and in-game interactions. 

Furthermore, we show that CPU and graphic adapter performance as well as operating system have 

large impact on the network traffic, whereas other factors like main memory have almost no impact.  

Games like UT are based on game engines that support, e.g., graphical features, scripting, and 

network communication. The UT engine is closed source and licensed to game developers for a high 

fee. Thus, its inner organization and its communication protocols are not known so that conclusions 

about the engine’s behavior can only be drawn by observing the network traffic. However, we point 

out that even knowing the characteristics and protocol behavior of an engine does not lead to a 

complete understanding of the network traffic that significantly depends on the game’s dynamics. 
This paper is organized as follows. In Section 2 we introduce UT and give an overview of the game. In 

Section 3 we briefly describe how network traffic data was obtained during the experiments. Section 4 

describes results concerning important traffic aspects. Finally, concluding remarks are given. 

   

2. Unreal Tournament 2004 
Unreal Tournament 2004 [2], released by Epic Games [3] and Digital Extremes [4] in March 2004, is 

the third descendant of the Unreal Tournament branch. It is sometimes viewed only as an extension 

to its predecessor Unreal Tournament 2003 but was and is able to find an immense number of 

players. While Unreal Tournament 2003 uses the Unreal Engine 2, released in 2000, UT builds upon 

the Unreal Engine 2.5, improved in rendering and supporting 64-Bit architectures as the first closed-

source game engine. As a typical representative of First Person Shooter games, UT provides a wide 

range of game modes differing in target and proceeding, but in most cases the game is extremely 

fast-paced and intense. In this paper, we analyze the Deathmatch game mode, being the most 

interactive mode (as all players are opponents in the virtual arena). This game mode represents the 

upper bound of network impact as it creates the highest amount of network game traffic. 

Furthermore, concerning the official UT statistics [5], Deathmatch is still the most-played game mode. 

While Massively Multiplayer Online Games are dedicated to support extremely high numbers of 

players, First Person Shooter games tend to limit game sessions to player counts of several dozens in 

the maximum, depending on the particular game mode. In Deathmatch games, the number of players 

normally resides below 20 (even below 10 in most cases). Specifically to this game mode, various 

maps of different sizes are available, representing virtual arenas. UT has been published for 

Windows, Mac OS X and Linux. 

 

3. Experimental Setup 
For obtaining network game traffic, different numbers of client machines were connected to a server 

through a GBit LAN. Those machines varied in hardware specification and operating system, building 

a heterogeneous group of participants. The server machine ran a dedicated UT server software, not 

participating in active gameplay. All machines gathered network traffic to and from the server locally 

by running wireshark [6], a network packet analyzing tool. Participating players varied in skill and 



experience and were allowed to set the game settings at will. All game entities were at the latest 

game patch level (3369). To gain representative in-game network data, numerous game sessions of 

at least 10 minutes duration were accomplished. The captured traffic was truncated to session parts in 

which all clients already joined the game, additionally cutting off the first game minute (mostly 

influenced by a short orientation and e.g. a weapon search phase) as well as the last 10 seconds of 

each session. Overall, we examined over 130 game sessions and 70 Million game packets. 

 

4. Traffic Characteristics 
In this section we analyze the characteristics of UT in-game traffic by analyzing different 

representative factors obtained during several Deathmatch game sessions. In Sec. 4.1 we give 

statements about some general observations we made concerning the game. Sec. 4.2 to 4.4 describe 

the rate of generated packets, their temporal offsets, their data sizes and the resulting bandwidth 

consumptions, respectively. After that, in Sec. 4.5 and 4.6 we observe the influence of different client 

hardware specifications and player in-game behavior. 

 

4.1. General Observations 
During the experiments, several general observations were made that should be considered as 

meaningful for evaluating UT game traffic. First of all, the engine’s network cycle (determining when 

packets are emitted) is closely coupled to its rendering cycle (determining the calculation of visual 

frames in the game). While future real-time games may employ different threads for those tasks, each 

assigned e.g. to different CPUs in multi-core architectures, this is not the case in UT, as it is in most 

existing First Person Shooters. This leads to a high variance in client network behavior (described in 

the following sections). Also, some client machines (e.g. laptops) tend to overheat due to insufficient 

cooling capabilities at phases of high game load during the experiments. The CPU processing speed 

was cut down to half automatically in these phases, influencing the game’s rate of frames per second. 

As the target of the experiments was to analyze representative UT game traffic, we do not ignore such 

cases but limit ourselves to point them out, for they may also occur in real Internet gaming as well.  

 

4.2. Packets per Second (PPS) 
During the game, data is exchanged between server and clients at specific rates per second, the 

Packets per Second rates (PPS). Clients send their game updates to the server, which has to 

aggregate them and disseminate them among all players. In this paper, we refer to PPS as the 

number of packets that has been sent during one second of game time, thus arranging those packets 

in one time bucket. The PPS differs in both directions and thus has to be analyzed separately. The 

oberservations show that the PPS from server to clients depends on how much information has to be 

published at the very moment as the game proceeds. If no player update information is needed (i.e. if 

the player took no action), the server constantly sends 6-8 packets per second to each client, as 

shown in Fig. 1. Here, 5 players joined a game without moving over the whole game time. This 

emitted traffic can be seen as a lower bound in UT PPS generation. As soon as player movement 
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information has to be disseminated, being the normal case in active gameplay, the PPS from server to 

clients increases. Fig. 2 shows the rates in a game where one player did not move while the other one 

was acting representatively for normal player behavior. The PPS rate from the server to the idle player 

consists of two main peaks, one of which also covers the range from 6-8 packets and one around 18 

packets. As the active player moves near the idle one (inside its ‘area of interest’, AOI), the latter has 

to be informed about its actions. This is accomplished by inceasing the PPS to the client to be 

informed, providing shorter delays between updates to ensure client-side “up to date” game states, a 

crucial factor for a good gaming experience. In game phases where no status update information has 

to be provided (e.g. because both players are located outside their mutual AOI), the PPS rate covers 

the same range as in idle times (compare Fig. 1). Active players also obtain more packets from the 

server than when idle, but less than their opponents. This is due to the fact that only a part of their 

actions has to be acknowledged by the server (like shooting), while e.g. movement information may 

be decided autonomously unless there is a conflict with the server state. Therefore, player actions are 

sent back by the server in PPS rates that vary from 6 to 19 packets (with 10 packets in the mean). 

While Fig. 2 shows the PPS distributions, Fig. 3 illustrates the absolute rates for the same case, 

showing how the idle player alternates between phases with the opponent inside and outside the AOI, 

respectively. The active player’s PPS varies stronger over time, reflecting own player actions. 

Obviously, as more players take part in a game session, the overall interaction between players 

increases because it is more likely for them to get into one another’s AOI in the virtual world. Since 

map sizes in the observed Deathmatch game mode range from very small to moderate-sized, the 

probability of interaction increases relatively fast, impacting network traffic. This effect is shown in Fig. 

4, where the probability distribution functions of server to client PPS are displayed for a comparably  
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large map (‘Osiris2’) with different player numbers. With more players taking part, the fraction of 18 

packets per second grows, while lower fractions decrease. Similar results are shown in Fig. 5, 

displaying PPS rates for three different-sized maps, but the same player count, respectively. In game 

session on the map ‘Leviathan’ there are nearly no idle phases, while on ‘Osiris2’ more moments 

without contact occur. The grade of interaction is not assessable offhand only by the broadness of a 

map and the number of players, though. Crucial is only the probability of virtual contact. This becomes 

clear when observing ‘Plunge’, a large map (in terms of its dimensions) which nearly in any point of 

game time allows seeing one’s opponents due to its structure (compare Fig. 6). Here, the PPS is 

located near 18 even with few players. 

As the PPS from server to clients follows the stated behavior, PPS from a specific client to the server 

is more complex to determine. Analysis shows that the rate of packets emitted by a client is directly 

coupled to its rate of processed frames per second (FPS). This leads to high fluctuations, depending 

on the client machine’s rendering capabilities, as well as high differences between different clients. 

Fig. 7 shows the PPS for a client that switches its rendering resolution during gameplay, affecting its 

PPS linearly to these changes. Analysis has shown that the maximum FPS rate is limited to a certain 

value (90 in Fig. 7) when playing UT over a network (also shown in Fig. 7), playing locally does not 

limit the reachable FPS rate. Furthermore, the engine aims for emitting one client packet per 

calculated frame, unless a specific FPS border is exceeded. This border has been delimited to be 

located between 45 and 55 FPS. As soon as the rendering cycle exceeds this value, the engine starts 

switching to sending a packet only every second frame. This is reasonable to reduce network load, 

due to missing advantage of higher PPS rates. Fig. 8 shows the PPS of 3 selected clients during a 

multiplayer game session. It has to be pointed out that the agility of a player (in terms of actions per 

time) has no influence on its PPS, crucial is the rendering performance. This is due to the fact that in 

most real-time games today, the rendering cycle is still connected to the network cycle. 

 

4.3. Inter-Packet Times (IPT) 
Packets sent to or from the server follow specific temporal offsets between one another, described 

through the Inter-Packet Times (IPT). While Sec. 4.2 examined packets in time buckets, this is not 

exact enough to draw conclusion about their temporal offsets. The delays between two consecutive 

data packets sent to the server by a specific client depend on the client’s current PPS rate. As the 

PPS is determined by the client’s FPS (as shown in Sec. 4.2), the IPT fluctuates following the 
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particular client’s characteristics, game situation and rendering cycles. Given a current PPS, the IPT 

arises from the equally temporal offset distribution between the packets. The IPTs from server to 

clients in contrast follow some observable regularities. Analysis of a game session with idle players 

showes that despite the absence of game interaction, the server sends two packets to each player 

periodically every 280 ms. The second of the two occurres exactly 56 ms after the first. For those two 

packets have different data sizes (which stay constant in each period), we conclude that UT uses two 

packet types for updating the clients local game states. This behavior fits well with the observed PPS 

rates (Sec. 4.2), as in idle phases the server sends 7 packets per second in average. In game 

sessions with more interactivity, the IPTs converge against constant offsets of 56 ms due to the rate 

of 18 packets per second to each client. In conclusion, the server decides in periods of 56 ms if data 

has to be disseminated to clients. In case game state information has to be sent, the server transmits 

packets to the relevant clients or otherwise remains without transmission. 

 

4.4. Game Payload and Bandwidth Consumption 
Payload size (PL) (the amount of application data transmitted in a specific data packet) in UT depends 

on the amount of data that has to be transmitted at a specific point of time. As mentioned in Sec. 4.3, 

PL size from server to clients in ‘idle’ game sessions shows peaks of occurrence in 2 main classes 

(around 20 and 45 bytes, respectively). We consider these packets to carry periodic status updates 

that occur periodically, even without further interaction in the game. The amount of data the server 

has to disseminate to each client naturally depends on the quantity of events that has to be sent to 

each specific client and therefore grows in average with the number of active players. Fig. 9 shows 

the PL size distribution from server to one client in various game sessions with different player 

numbers. It is clear that as more players create more information to be disseminated by the server, 

the PL sizes grow by the additivity of game events. Also, the PL sizes sent to a specific client closely 

depend on the amount of payload this specific client previously transmitted to the server (due to the 

fact that information gets acknowledged by the latter). In contrast to this development, PL sizes 

generated by a specific client partly depend on its currently emitted PPS rate, the player behavior (see 

Sec. 4.6) and the level of interaction. Fig. 10 shows three different PL size distributions, one that 

represents an idle client, one for a client involved in high interaction and one in a game session with 

low level of interaction. It can be observed here that idle clients nearly constantly send packets of PL 

size around 20 bytes to the server. As clients act actively and agile, the PL sizes increase, being 

partitioned into several dedicated classes. This is due to the fact that the client sends its current 

actions to the server, resulting in packets that carry information over none, one or more actions (and 

therefore exhibiting dedicated sizes). Resulting from that, clients in less interactive environments 

posess PL size distributions with a higher fraction around 20 bytes, representing game phases with 

less player agility. Additionally it should be mentioned that agile clients with relatively low PPS rates 

sometimes need to send more actions in one packet, resulting in occurrences of higher PL sizes at 

times. While PL sizes only consider application data, bandwidth (BW) consumption is determined 

through the combination of communication protocol headers (UDP, IP) and PL. As such, the 

bandwidth consumed by a UT server in a specific range of time is the sum of data sent to all clients 



within this period. BW consumption at the server link typically increases by around 20 Kbits/sec per 

client. The more interaction takes place in the game session, the more the bandwith consumption will 

grow (until the upper bound is reached in terms of player agility). E.g. comparing a session with 2 

players to a session with 3 players makes a difference of 16 Kbits in average, while comparing the 

latter with a 4 player session increases the BW consumption by 20 Kbits. The BW consumed by a 

client is determined through its PPS rate and its generated PL sizes, typically ranging between 16 to 

23 Kbits/sec in game sessions with little interaction and 18 to 25 Kbits/sec in highly interactive games 

or for clients that reside at the upper bound of the engine, concerning its FPS. 

 

4.5. Hardware and Operating System Impact  
For hardware performance impact conclusions, we limit ourselves to client machines (assuming that 

the server is  chosen to fit its dedicated role). As stated in Sec. 4.2, client PPS rates highly depend on 

its current FPS rates. This factor also influences IPT, PL and BW as has been shown. As such, 

rendering performance (determined by the graphics card and the CPU to some extent) is the crucial 

factor when observing hardware impact, other aspects (e.g. main memory) did not affect the network 

traffic notably during the experiments. It should be mentioned that FPS may not only be increased by 

better hardware configuration but also e.g. by playing at lower resolutions or downgrading the game’s 

graphical effects (some players in the experiments chose to do so). Besides higher FPS, less 

fluctuations of all observed factors occurred, because the game engine is able to hold its FPS rates, 

even more if the FPS rate is located at the specific client’s FPS limit and thus rather limited by local 

constraints than by computational disability (compare Sec. 4.2). As also stated in Sec. 4.2, clients that 

remain narrow to the FPS rate at which the engine generates one packet per frame impact the 

network most in terms of packet count. Concerning the employed operating systems (OS), the 

experiments showed that all OSs behave similar when running UT, but there are some factors to point 

out. It could be observed that when running Linux, the maximum allowed FPS rate during game play 

was lower than when running e.g. Windows. Also, some Linux client machines showed indeterministic 

engine behavior, independently of how the player was acting. In these cases, the engine switched the 

game’s FPS rate between several classes every couple of minutes, affecting most factors of the 

client’s network impact. On the same machines this effect could not be detected when running 

Windows. Most probably these incidents may be traced back to graphics card drivers or similar 

reasons we were not able to figure out, but they are Linux-specific, as the analysis showed. 

 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 15  20  25  30  35  40

R
el

at
iv

e 
F

re
qu

en
cy

 o
f O

cc
ur

re
nc

e

Payload Size [Byte]

PL Size Distributions, Different Levels of Interaction

No Interaction
High Interaction
Low Interaction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 20  25  30  35  40  45  50  55

R
el

at
iv

e 
F

re
qu

en
cy

 o
f O

cc
ur

re
nc

e

Packet Payload [Bytes]

PL Distribution, Map: "Hyperblast2", 2 Players

Skilled Player
Novice Player

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 4  6  8  10  12  14  16  18  20  22

R
el

at
iv

e 
F

re
qu

en
cy

 o
f O

cc
ur

re
nc

e

Number of Packets per Second

PPS Distribution, Map: "1 on 1 Crash", 2 Players

Skilled Player
Moderate Player

Fig. 10:  PL Distributions Clients to 
Server, Different Interaction Level 

Fig. 11: PL Distributions Clients to 
Server, Different Player Skills 

Fig. 12:  PPS Server to Clients 
Distributions, Different Player Skills 

 



4.6. Player Behavior and Skill 
The characteristic (virtual) behavior of a UT player influences the generated network traffic in many 

respects. A player could choose to wait in a specific place to ambush his opponents (often called  

‘Camping’) or run through the map highly agile, assaulting anything that moves. Those two different 

playing types of course come with different generated network traffic. The experiments have shown 

that highly skilled players generate partially higher PL sizes (due to the amount of actions they 

accomplish in parallel). Fig. 11 shows the difference in PL size distribution for two players in the same 

game session that differ in their skills. Also, as skilled players act more agile (unless they are 

campers) and generate more game state information, they arrange for other players to obtain more 

packets. Fig. 12 shows the compared PPS distributions for two (different skilled) players, revealing 

that the skilled player receives less packets as a result of his opponent acting less agile. Thus, by 

knowing a client’s hardware specification, conclusions could be drawn on its behavior by only 

analyzing the network traffic. 

 

5. Related Work 
Several works exist examining network traffic of specific real-time games, e.g. [7] [8] [9] [10]. Those 

works mainly focus on how to model the network traffic of each specific game, while we also draw 

conclusions about how the engine behaves depending on various factors. 

 

6. Conclusion and Future Work 
This paper presented an analysis of characteristic network traffic generated by Unreal Tournament 

2004, a popular real-time First Person Shooter game. Considering the number of packets generated 

per second, the inter-packet time and the payload sizes, we showed how the number of players, the 

player behavior and in-game interactions affect game traffic. Whereas the traffic from the client to the 

server roughly depends on the rate of processed frames per seconds, server to client traffic increases 

for active players as well as for idle players when an active player is moving in their area of interest. 

As additional factors we considered hardware and operating system specification. We found that the 

number of frames per second that can be processed by CPU and graphic adapter linearly determines 

network traffic until an upper bound is reached. As differences between Linux and Windows we found 

that the maximal number of frames per second is lower in Linux. In the future, the work may be part of 

a specific UT traffic generator or a more generic generator for the class of real-time games. 
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