
76 PIK 31 (2008) 2

KOMMUNIKATION UND DIENSTE

10.1515/piko.2008.0016

K.G. Saur Verlag, München, 2008

Th. Gamer, Chr. Mayer, and M. Schöller

PktAnon – A Generic Framework for
Profile-based Traffic Anonymization

Thomas Gamer studied Computer Sci-
ences at the Univerity of Karlsruhe and
received its diploma degree in 2005.
Since then, he has been working as sci-
entific assistant at the Institute of Tele-
matics of the University of Karlsruhe.
His main research interests include ano-
maly-based attack detection, network
security, and WLAN meshes.

Christoph P. Mayer graduated from the
University of Karlsruhe in 2007 with a di-
ploma in computer science. In 2008 he
joined the Institute of Telematics at the
University of Karlsruhe as scientific staff.
He is working on security and anonymity
for future networks in the BW-FIT project
SpoVNet.

Marcus Schöller has studied computer
science at University of Erlangen-Nürn-
berg, University of Karlsruhe (TH), and
University of Uppsalla, Sweden. In 2006
he received his doctoral degree from
University of Karlsruhe (TH) for his stu-
dies on robustness of programmable
networks. Thereafter, he joined the com-
puting department of Lancaster Univer-
sity, UK, for his postdoctoral year inves-
tigating fundamental principles of resili-

ent networking. In June 2006 Marcus joined the Next Genera-
tion Network Group at NEC Network Laboratories Heidelberg
as a research scientist. His research covers areas about auto-
nomic and resilient networking, security, and monitoring.

ABSTRACT

Computer network researchers, system engineers and network
operators have an increasing need for network traces. These
are necessary to build and evaluate communication systems.
This ranges from developing intrusion detection systems over
evaluating network protocols or system design decisions, up to
education in network security. Unfortunately, availability of real-
world traces is very scarce, mainly due to privacy and security
concerns. Making recorded data anonymous helps to mitigate
this problem. Available anonymization systems, however, do

not provide sufficient flexibility, extensibility or ease of use.
Therefore, we developed a generic framework for traffic ano-
nymization that can easily be configured by anonymization pro-
files. Such profiles ensure an easy adaptation of the information
actually being made anonymous to different environments or lo-
cal legislation. Furthermore, our framework supports flexible
application of arbitrary anonymization primitives to every proto-
col field. Due to its extensibility our framework provides an easy
incorporation of new anonymity-enhancing techniques, too. Ad-
ditionally, it prevents accidental disclosure of private data by ap-
plying a technique called defensive transformation. Finally, it
can be used for online as well as offline anonymization of net-
work traffic.

I INTRODUCTION

Anonymization of network traffic has been a challenging Problem
for several years. Despite the work that has been done from
that time on and the huge benefit that results from real-world
network traces, sharing of recorded traffic today is still per-
formed only in a very limited domain.

Network traces are necessary in very different fields of compu-
ter networking in order to evaluate new networking mecha-
nisms, software systems or system design decisions. During
deployment of a new network decisions about required services
and their location have to be made. Therefore, assumptions are
made on the number of users, on the usage of services, on traf-
fic distribution, and many more network characteristics. After-
wards, the network behavior in different situations has to be
evaluated with real-world network traffic. The development of
network protocols or the design of server systems also relies on
decisions about system parameters like buffer sizes or applied
algorithms. These decisions, which are based on information
that can be inferred from real-world traffic, highly affect system
performance and robustness.

Manufacturers of signature-based attack detection systems
need large amounts of real-world traffic, too, e.g. to create sig-
natures of malicious packets. Additionally, researchers that
work on anomaly-based detection systems need real-world
traffic to evaluate effectiveness of their systems. If such sys-
tems are deployed in real networks their success heavily de-
pends on the quality of the evaluation and therefore, on real-
world network traffic.

However, in most cases simulated network traffic must be used
which makes certain assumptions about traffic characteristics
like burstiness or address distributions due to the lack of real-
world traces. On the one hand, these simplifications ensure that
specific characteristics of the developed system or protocol can

PIK 31 (2008) 2 77

PktAnon – A Generic Framework for Profile-based Traffic Anonymization Gamer, Mayer, Schöller

be evaluated in detail without side effects. On the other hand
the simplifications may lead to inaccurate or even incorrect re-
sults compared to an evaluation with real-world network traffic.
Real-world traffic shows some characteristics that cannot pre-
cisely be replicated by self-generated traffic. Examples encom-
pass abnormal behavior due to misconfigured nodes or the oc-
currence of non protocol-conform packets due to faulty inter-
faces or links. In summary, an evaluation of newly designed net-
work systems and protocols with real-world network traffic does
not only show how a system works under real conditions but
also how it reacts under adverse conditions. Thus, reliable re-
sults can only be achieved by using real-world network traffic.

A Requirements

In order to get real-world traffic for evaluations and analysis net-
work traffic of routers or hosts has to be recorded. But there are
some requirements for recording traffic that is meant to be
made available to others, e.g. to another department of a com-
pany or to other users of the Internet.

Recorded network traffic currently is scarcely publicly available
mainly due to privacy concerns. Thus, the first requirement for
recording traffic is to protect the users of the network. The ano-
nymization that is necessary to fulfill this requirement usually is
regulated by local legislation. In most countries all data which
allows a mapping of recorded traffic to the real identity of the
person that sent the data has to be made anonymous. This in-
cludes, for example, an anonymization of IP addresses and
payload data since such data often contains private informa-
tion. Furthermore, some data protection laws state that per-
sonal data may be recorded only if really necessary: principle of
avoidance and thriftiness. If traffic, however, is recorded it has
to be made anonymous as fast as possible [1]. In our opinion,
this requires online anonymization in most cases, i.e., traffic
has to be made anonymous before storing it on some medium.

Another aspect of privacy concerns which is often ignored is
the protection of companies and their networks. This protection
aims at making anonymous all data that might be useful for an
attacker to compromise the network or to launch a highly so-
phisticated attack. Internal network structures, available serv-
ices, and already compromised machines are just a part of the
information an attacker can gain from network traces that are
only made anonymous in regard to protection of users. There-
fore, the second requirement is beyond legal requirements and
includes e.g. an anonymization of port numbers or header fields
of the application protocol. Such an anonymization may also be
performed offline, i.e., before making previously recorded traffic
available to others.

Additionally, companies may want to outsource talks like ac-
counting or security analysis. Anonymization then needs spe-
cial properties, e.g. certain internal structural elements like net-
work prefixes or broadcast addresses must be preserved.

In order to address these requirements a framework for traffic
anonymization must fulfill the following characteristics:

Flexibility means the possibility to apply the anonymization
framework in different technical environments and with varying
objectives. Especially autonomic networks [2] will have varying
network characteristics and thus, require a high flexibility.
Therefore, it must be possible to make any data field anony-
mous with an arbitrary anonymization primitive.

Extensibility to easily add new network protocols and new an-
onymization primitives. A huge range of different network proto-
cols exists and each of them might be of interest to research-
ers. Thus, it is highly important to allow arbitrary protocols to be
easily added to the anonymization framework. Therefore, the
framework must be designed to be very generic. It must have a
common protocol interface and support arbitrary protocol en-
capsulations like IP-in-IP or IP-in-ICMP transparently. Addition-
ally, an anonymization framework must allow arbitrary anonymi-
zation primitives to be included into the framework easily. This
ensures adaptability to different as well as future anonymization
needs and furthermore, gives researchers the possibility to
easily integrate newly developed primitives into the framework
and e.g. to evaluate them in a real system with currently known
attacks on anonymization [3].

Configurability for each user that records traffic using the an-
onymization framework to define his own anonymization profile,
i.e. his own mapping between protocol attributes and anonymi-
zation primitives, according to his needs. Thus, profiles imple-
ment a specific anonymization policy that respects the trust re-
lationship between the party that records network traffic and the
party the recorded traffic is given to. In order to ensure usability
policies should not be hard-coded but must be configurable out-
side of the program using e.g. a simple configuration file which
can be edited easily. It is, however, beyond the scope of this pa-
per to answer the question how to choose the right anonymiza-
tion primitives and protocol attributes that should be made
anonymous.

B Related Work

Tcpdpriv [4], the first anonymization tool for network traffic has
been published in 1996. It provides anonymization for a few
data fields like IP addresses, port numbers and payload data by
applying some predefined anonymization primitives. A small
degree of configurability is achieved by command line parame-
ters. Extensibility and flexible mapping of arbitrary data fields to
arbitrary anonymization primitives, however, is not available.
Pang et al. [5] extended the policy-based intrusion detection
system Bro to perform network trace anonymization. The focus
of their work is on application level protocols like HTTP or FTP.
The anonymization framework FLAIM [6] provides extensibility
but lacks some flexibility as it can only map certain anonymiza-
tion primitives to a protocol attribute, a hash function or HMAC
anonymization, for example, can not be applied to IP ad-
dresses. Furthermore it does neither support arbitrary protocol
encapsulations like IP-in-IP [7] nor checksum validation and re-
calculation after having made data anonymous.

Koukis et al. [8] propose a generic application programming in-
terface (API) to perform network trace anonymization. The ano-
nymization policy a user desires is created by using a series of
API function calls which may be difficult especially for users
without a technical background. Furthermore, it is not possible
to quickly change or adapt the anonymization profile without re-
building the whole project. Tcpmkpub [9] is considered the cur-
rent state-of-the-art tool for making network traces anonymous.
It is extensible and configurable by providing external configura-
tion of protocol formats and mapping between data fields and
anonymization primitives. Flexibility, however, is decreased by
the fact that no generic anonymization primitives can be applied
to different protocol attributes, e.g. a blackmarker must be im-
plemented separately for each attribute it should be applied to.
Furthermore, online anonymization is not possible since Tcp-

78 PIK 31 (2008) 2

Gamer, Mayer, Schöller PktAnon – A Generic Framework for Profile-based Traffic Anonymization

mkpub needs multiple passes over the original network trace
for anonymization of data.

In addition to anonymization tools and frameworks several con-
tributions have been made focusing only on certain anonymiza-
tion primitives. Biskup et al. [10] and Verlier et al. [11], for exam-
ple, designed pseudonymization methods that can be used in
conjunction with intrusion detection systems. Primitives for a
prefix-preserving IP address anonymization have been devel-
oped by Xu, Fan et al. [12], Harvan and Schonwalder [13], and
Ramaswamy and Wolf [14]. Anonymization techniques regard-
ing URLs and filenames have been evaluated by Kuenning and
Miller [15]. A different anonymization approach by hiding the
content of packets in a larger, scrambled content has been sug-
gested by Ponce et al. [16]. All these primitives can be easily in-
tegrated into our anonymization framework.

Simultaneously to the development of new anonymization prim-
itives attacks on known primitives or anonymous traces have
been performed. Brekne et al. [17] evaluated attacks on prefix-
preserving IP address anonymization as well as pseudonymi-
zation schemes. Kohno et al. [18] used the TCP timestamp op-
tion to fingerprint remote hosts in order to show that this option
is – in contrast to former believe – highly sensitive. Coull et al.
[3] used statistical methods in conjunction with publicly availa-
ble information to infer sensitive information like server identi-
ties from a set of published traces that were made anonymous
by Tcpmkpub. Allman and Paxson [19] discuss higher level is-
sues on network data sharing and give a framework of guide-
lines for sharing and usage of measurement data.

II FRAMEWORK

Existing tools and frameworks that are able to record and make
network traces anonymous are often applicable in certain situ-
ations but lack useful features in other ones. Therefore, we built
a generic anonymization framework that overcomes these limi-
tations by providing flexibility, extensibility, and configurability.

In section II-A we explain the design considerations that form
the basis of our framework. Then, in section II-B implementa-
tion details are given before describing the integration of ano-
nymization profiles in section II-C. Finally, section III details on
an evaluation of our anonymization framework.

A Design considerations

Several design considerations have to be answered when build-
ing a network trace anonymization system. We will explain
these considerations here to make clear why we designed our
system called PktAnon the way we did.

1) Input and output handling: In order to achieve full flexibility
we decided to clearly separate I/O handling from packet parsing
using a minimal interface. This ensures that different formats
can be applied, i.e., only packet data which is independent of the
actual format is delivered to packet parsing of the framework. By
encapsulating the actual I/O format online as well as offline an-
onymization is enabled. We consider online anonymization the
best and most secure choice for usage in network trace ano-
nymization since no original data is stored on local discs.

2) Packet parsing: In order to access the data fields which have
to be made anonymous and to write back the transformed data

the syntax of parsed packets must be implemented into proto-
col classes. This can be done either within the anonymization
system itself or externally configured.

We decided not to use external configuration but to build the
protocol definitions into our anonymization framework. This al-
lows the complete protocol specific structures and semantics to
be encapsulated into a protocol class and thereby, leads to a
clear object-oriented design. External protocol definitions [9],
on the other hand, use a generic stream reader and protocol
specific configurations to parse packets. But these definitions
are not flexible enough to capture the versatility of protocols. By
using an external configuration it is, for example, hard to ex-
press that calculation of the TCP checksum is done using a
pseudo header which includes the lower layer IP address.

3) Building the protocol chain: As today’s network packets are
often arbitrarily encapsulated we chose a loose coupling of net-
work protocols which we call a protocol chain. Protocols of a
packet are sequentially read and corresponding protocol
classes are instantiated. These objects then are linked forming
the protocol chain (see fig. 1). In this way, encapsulations like
IP-in-IP or IP-in-ICMP can be handled transparently and thus,
extensibility regarding support of arbitrary protocol encapsula-
tions is provided by our framework.

4) Protocol chain transformation: Having created the protocol
chain any protocol field can be made anonymous. Therefore, a
configuration is created that defines for each supported proto-
col which anonymization primitives are applied to the data fields
of the protocol (see section II-C for further details). Flexibility of
our framework is ensured by allowing an arbitrary mapping of
anonymization primitives to protocol attributes.

In order to prevent accidental transfer of private data from the
original packet to the transformed packet we use a transforma-
tion model we call defensive transformation. Instead of changing
the value of a protocol attribute in the original protocol chain we
perform a different approach: during the anonymization process
a protocol chain duplicate is created. All fields are initially empty
and must be filled by a transformation from the original packet
chain (see fig. 2). Thus, no sensitive data can remain in the
anonymous protocol chain by mistake. This means that protocol
fields that should keep their original values must be explicitly
copied into the protocol chain duplicate. Therefore, an additional
anonymization primitive called AnonIdentity is defined for this
task. We believe that by applying defensive transformation a
higher level of security can be reached since original data is only
transferred to the new chain if explicitly specified.

Fig. 1 Building the protocol chain
P

ac
ke

t o
bj

ec
t

Retrieve header information

Protocol
object

Retrieve header
information

Protocol
object

Protocol
object

. .

Retrieve header information
.
.
.

Protocol Chain

PIK 31 (2008) 2 79

PktAnon – A Generic Framework for Profile-based Traffic Anonymization Gamer, Mayer, Schöller

Besides applying a single anonymization primitive to the value
of a protocol field our framework additionally supports chaining
of anonymization primitives. In this case the first anonymization
primitive is called to transform the provided buffer during the
transformation process. Depending on the result of this ano-
nymization primitive a further primitive can be called. By allow-
ing usage of consecutive anonymization primitives we provide
special handling e.g. for protocol attributes like broadcast MAC
addresses in case a user wants to preserve them. In this way,
our framework provides a flexible method for handling special
protocol attributes that is much easier to use than hard-coded
exception mechanisms.

B Implementation

We will now describe theiImplementation of PktAnon in detail to
make clear how the design considerations named in section
II-A are realized. PktAnon has been written in C++ and tested
with Microsoft Visual C++ 2005 under Windows XP and GNU
gcc 4.0.2 under Linux 2.6.13.

1) Protocol classes: pcap frames are sequentially read from
the input source one at a time. The packet buffer portion of a
frame is then given to the Packet class that starts the main
parsing routine. In order to enable the Packet class to build the
protocol chain all protocol classes must implement a basic in-
terface that allows the parsing process for each protocol to be
started from the Packet class. After parsing a protocol all proto-
col classes return which is the subsequent upper layer protocol.
According to this value the Packet class creates a suitable pro-
tocol class object and calls the parsing routine. This way the
protocol chain is built iteratively until the end of a packet is
reached.

So far PktAnon implements the following protocol classes: Eth-
ernet, ARP, IPv4, IPv6, ICMPv4, UDP, TCP, and PayloadPacket.
A protocol class must implement parsing and assembling func-
tionality and provide access to protocol attributes in a conven-
ient way. Furthermore the protocol class is responsible to guar-
antee a well formed binary data after assembling. This includes
adjusting length fields and recalculating checksums. If a proto-
col does not know its next upper layer protocol it tells the frame-
work to use the PayloadPacket protocol class which simply en-
capsulates a data buffer containing arbitrary data.

2) Anonymization primitive: To provide an arbitrary mapping of
protocol attributes to anonymization primitives we define a min-
imal interface for anonymization primitives.

During the transformation process of the protocol chain the as-
signed anonymization primitive is called automatically from
within the framework for each protocol attribute. The actual at-

tribute is handled transparently as a generic data buffer with a
specific length. An anonymization primitive returns two values:

– A boolean value whether the anonymization process contin-
ues or is aborted in case multiple anonymization primitives
should be applied consecutively

– The new length of the data buffer in case the buffer length
changed

Table 1 Overview of anonymization primitives and their parameters

Table 1 shows some exemplary anonymization primitives that
currently are implemented into PktAnon. The AnonShorten
primitive, for example, can be used to shorten PayloadPacket
buffers and option fields like in IP and TCP. This way the proto-
col chain can be kept up to the point of the last known protocol
and payload data can be shortened to a new length of 0 if stor-
age space optimization shall be achieved. The AnonBroad-
castHandler primitive currently is the only conditional anonymi-
zation primitive that can be used to apply chaining of anonymi-
zation primitives.

C Anonymization profiles

As packet traces are recorded by one party and used by an-
other one the trust relationship between the two must be re-
flected by the anonymization policies. It is easily imaginable
that lots of different trust relationships exist and therefore, a
profile-based anonymization framework must allow to imple-
ment all possible policy sets in order to ensure full configurabil-
ity.

<submodule name=TcpPacket>
 <item name=TcpSourceport anon=AnonHashSha1/>
 <item name=TcpDestport anon=AnonHashSha1/>
 <item name=TcpSegnum anon=AnonIdentity/>
 <item name=TcpAcknum anon=AnonIdentity/>
 <item name=TcpFlags anon=AnonIdentity/>
 <item name=TcpWindowsize anon=AnonIdentity/>
 <item name=TcpUrgent anon=AnonConstOverwrite val=0x00/>
 <item name=TcpOpt anon=AnonShorten newlen=0/>
</submodule>

Fig. 3 Extract from an anonymization profile

PktAnon uses XML-based anonymization profiles to configure
the mapping of anonymization primitives to protocol attributes.
Furthermore, additional parameters of anonymization primi-
tives (see table I) are configured in these profiles, too. Fig. 3
shows an exemplary XML configuration for the TCP protocol.

Fig. 2 Protocol chain transformation

Anonymization
Primitive 2

Anonymization
Primitive 1

Anonymization
Primitive 1

Original
Protocol
Chain

Duplicate
Protocol
Chain

Name Parameters Description

AnonBroadcast-
Handler

– Preserve broadcast MAC ad-
dresses.

AnonConstOverwrite byte value Overwrite every byte with
provided value.

AnonCryptoPan key for Rijndael Prefix-preserving anonymiza-
tion [20].

AnonHashSha1 – Hash complete buffer with
SHA1.

AnonHashHmacSha1 key for HMAC Hash complete buffer with
HMAC SHA1.

AnonIdentity – Do not change buffer.

AnonRandomize – Overwrite each byte with a
random value.

AnonShorten new length Cut buffer to given length.

80 PIK 31 (2008) 2

Gamer, Mayer, Schöller PktAnon – A Generic Framework for Profile-based Traffic Anonymization

Additionally, general parameters are configured by such XML-
based profiles, e.g. input and output as well as flags that control
tasks like the inbuilt runtime measurement engine or ASCII-
based debug output of original and anonymous data.

At startup, PktAnon reads the given XML profile, creates and
configures anonymization primitives and then statically assigns
them to the according protocol attributes. Each protocol at-
tribute that is implemented in PktAnon must have an anonymi-
zation primitive assigned in the XML profile – otherwise an error
is reported. Protocol attributes that are not to be made anony-
mous must be assigned the AnonIdentity primitive. Addition-
ally, further checks, e.g. if parameters are within valid bounda-
ries, are performed during startup in order to prevent configura-
tion errors.

III EVALUATION

We have shown in section II-A.1 that our system supports sev-
eral input/output sources and thus, enables offline as well as
online anonymization. Especially for online anonymization
where traffic from e.g. tcpdump is directly piped into PktAnon,
processing speed is very important. A processing that is too
slow will make the packet capture entity drive into dropping
packets as they cannot be delivered through standard I/O.

Our evaluation system has the following configuration: GNU/
Linux 2.6.13 i386, Intel(R) Pentium(R) 4 CPU 2.80 GHz with
2 GB RAM. In order to determine the maximum processing
speed of our anonymization framework we use offline anonymi-
zation. Therefore, a trace file is used that has been recorded on
a gateway router of a large stub network. The trace file contains
about 8.2M full-length packets which add up to a file size of
4.7 GByte including pcap headers.

A PktAnon runtime

First we evaluate the performance of each stage of our frame-
work successively. The profile we use for measurement in this
evaluation is an identity profile, i.e., the AnonIdentity primitive
is attached to each protocol attribute. Runtime of each single
anonymization primitive will be evaluated separately in section
III-B. The different stages of PktAnon are measured in the fol-
lowing sequential order:

– File input processing PktAnon reads packets one at a
time from the source file. With this test we can measure how
file input affects processing speed.

– Packet parsing and building the protocol chain This test
focuses on parsing of data read from the source file and on
building of original protocol chains which is done after read-
ing a packet.

– Defensive protocol chain transformation This test meas-
ures the time PktAnon needs to create the duplicate protocol
chain and apply anonymization. As performance of the ano-
nymization primitives is evaluated later we use the identity
profile for transformation. After anonymization the new pro-
tocol chain is converted into the appropriate input/output for-
mat.

– File output The last test evaluates the performance of the
file output operation.

Optional tasks that can be additionally applied are checksum
recalculation and checksum validation. Checksum recalcu-

lation is done after protocol chain transformation if required. Ad-
ditionally, PktAnon allows checksums to be validated. This is
useful to keep bad checksums in the anonymous data for proto-
cols that originally had bad checksums.

Table II(a) shows the average speed of each of the serialized
tasks. It can be seen that file output takes up a lot of processing
time and that normal protocol handling and the anonymization
process are fast compared to I/O. The optional tasks checksum
recalculation and validation were measured after evaluating the
serialized tasks. The result of this measurement – about 1 s ad-
ditional time per task – shows that these optional tasks are neg-
ligible.

TABLE II Average Throughput of PktAnon

(a) Different anonymization tasks

(b) Different anonymization primitives

Additionally, we compared PktAnon with tcpdpriv [4]. The last
row of table II(a) shows the duration and throughput of tcp-
dpriv if the same input file is used. In order to enable a correct
comparison between both tools, tcpdpriv is configured not to
make IP addresses and port numbers anonymous. Payload,
however, is always deleted by tcpdpriv, i.e., packets are writ-
ten to an output file without payload data. Therefore, we only
measured the time tcpdpriv took to read the input file and to
perform the identity anonymization. Moreover, checksum re-
calculation is done during the measured time. A comparison
between both tools – tcpdpriv took about 100 s, PktAnon
about 114 s – shows that our anonymization framework took
only a little more time for offline anonymization than tcpdpriv
but offers a more secure anonymization by defensive transfor-
mation. Additionally, higher configurability and usability are
provided by usage of anonymization profiles as well as higher
flexibility by allowing an anonymization of each protocol at-
tribute. Finally, extensibility ensures anonymization of arbi-
trary protocols, application of arbitrary anonymization primi-
tives, and easy incorporation of to-be developed anonymiza-
tion primitives and protocols.

Furthermore, we did an evaluation of online anonymization
based on the identity profile. Therefore, we generated CBR net-
work traffic. A throughput of up to 120 Mbit/s can be achieved
without packets being dropped by our framework. Real network
traffic, however, has no constant bitrate but, on the contrary,
shows self-similar behavior [21]. This leads to the situation that
no universally valid statement about achievable processing
speed is possible but throughput and number of dropped pack-

Sequential tasks Throughput [Mbit/s] Duration [s]

File input 406.8 95.1

Packet parsing 404.2 95.6

Chain transformation 337.3 113.5

File output 150.6 257.2

tcpdpriv (no file output) 392.4 99.8

Anonymization primitive Throughput [Mbit/s]

AnonIdentity 337.3

AnonConstOverwrite 309.8

AnonHashSha1 39.0

AnonHashHmacSha1 17.9

AnonRandomize 57.1

Mixed primitives 95.6

PIK 31 (2008) 2 81

PktAnon – A Generic Framework for Profile-based Traffic Anonymization Gamer, Mayer, Schöller

ets heavily depends on the characteristics of the recorded net-
work traffic.

B Anonymization primitive runtime

During the previous evaluation we only used the anonymization
primitive AnonIdentity for anonymization. We have seen that an
average throughput of about 337 Mbit/s can be achieved using
this primitive if file output is not regarded. Table II(b) lists the av-
erage throughput – not regarding file output – if each protocol
field of a packet is made anonymous with the measured ano-
nymization primitive, i.e., the primitive is applied to every proto-
col field of a packet. AnonShorten cannot be applied to each
protocol field and thus, was not measured but this primitive has
a complexity of O(1). AnonCryptoPan can only be applied to
IPv4 addresses and has been evaluated in [22]. The last row of
table 11(b) additionally shows the resulting throughput if an an-
onymization profile is applied that, in our opinion, protects users
and the network. In this case different primitives are used de-
pending on the protocol field.

The first two primitives have a complexity of O(N) to make N
bytes anonymous and do not reduce the average throughput
much. Primitives that must calculate a hash value or create a
random number for each protocol attribute, however, signifi-
cantly reduce the average throughput. Especially Anon-
HashHmacSha1 which has to calculate a cryptographic hash
value is expensive in comparison to other primitives if applied to
each field. The value in the last row, however, shows that if a
more realistic anonymization profile is applied an average
throughput of about 100 Mbit/s can be achieved with offline an-
onymization.

IV SUMMARY AND OUTLOOK

The importance of recorded network traces increases with the
increasing complexity of today’s networks. Researchers, sys-
tem engineers, and network operators are in need of recorded
traffic for their daily work. On the other hand, privacy and secu-
rity issues as well as local legislation limit the way network data
may be recorded. Specialized solutions have been proposed for
many different application domains but no universal framework
is available today which can be adapted to different scenarios,
requirements, and trust relations. Our work depicts such a
framework that can be configured easily using anonymization
profiles. It prevents accidental information leakage by defensive
transformation, and supports chaining of anonymization primi-
tives. Furthermore, it is extensible and allows arbitrary ano-
nymization of every known protocol attribute. Compared to ex-
isting solutions the performance of our tool looks promising.
PktAnon software is publicly available at [23].

Future work has to be done on defining anonymization profiles
that meet the basic legal issues. This must be achieved in col-
laboration with lawyers specialized in this area. PktAnon ena-
bles an easy creation and deployment of these profiles. Addi-
tionally, further work has to be done to improve processing
speed of our framework, e.g. by applying parallel processing or
hardware-based cryptographic acceleration. Finally, achievable
throughput and packet drop rates of an online anonymization
have to be evaluated in more detail using real network traffic
with real-world characteristics like self-similarity.

REFERENCES

[1] Haibl, Dressler: Anonymization of measurement and monitoring
data: Requirements and solutions. In: Praxis der Informationsver-
arbeitung und Kommunikation (PIK) 29 (4) (2006) 208-213.

[2] Schmid, Sifalakis, Hutchison: Towards autonomic networks. In:
Proceedings of 3rd International Annual Conference on Auto-
nomic Networking, Autonomic Communication Workshop (IFIP).
Lecture Notes in Computer Science, Springer Verlag, Heidelberg
(2006) 1-11.

[3] Coull, Wright, Monrose, Collins, Reiter: Playing devil’s advocate:
inferring sensitive information from anonymized network traces.
In: Proceedings of the ISOC Network and Distributed Systems
Symposium. (2007) 35-47.

[4] Minshall: tcpdpriv (1996) http://ita.ee.lbl.gov/html/contrib/tcpd-
priv.html.

[5] Pang, Paxson: A high-level programming environment for packet
trace anonymization and transformation. In: Proceedings of the
2003 conference on Applications, technologies, architectures, and
protocols for computer communications, ACM Press (2003) 339-
351.

[6] Slagell, Lakkaraju, Luo: Flaim: A multi-level anonymization frame-
work for computer and network logs. In: Proceedings of 20th USE-
NIX Large Installation System Administration Conference (LISA
’06). (2006) 101-115.

[7] Perkins: IP Encapsulation within IP. RFC 2003, IETF (1996).
[8] Koukis, Antonatos, Antoniades, Markatos, Trimintzios: A generic

anonymization framework for network traffic. In: Proceedings of
IEEE International Conference on Communications (ICC), IEEE
(2006) 2302-2309.

[9] Pang, Allman, Paxson, Lee: The devil and packet trace anonymi-
zation. In: ACM SIGCOMM Computer Communication Review.
(2006) 29-38

[10] Biskup, Flegel: Transaction-based pseudonyms in audit data for
privacy respecting intrusion detection. In: Third International Sym-
posium on Recent Advances in Intrusion Detection (RAID). Lec-
ture Notes in Computer Science, Springer Verlag, Heidelberg
(2000) 28-48.

[11] Verlier, Brekne, Eres: Non-expanding transaction specific pseudo-
nymization for ip traffic monitoring. In: Proceedings of Cryptology
and network security (GANS), GANS (2005) 261-273.

[12] Xu, Fan, Ammar, Moon: Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptog-
raphy-based scheme. In: Proceedings of IEEE International Con-
ference on Network Protocols, IEEE (2002) 280-289.

[13] Harvan, Schonwalder: Prefix- and lexicographical-order-preserv-
ing ip address anonymization. In: Proceedings of Network Opera-
tions and Management Symposium (NOMS). (2006) 519-526.

[14] Ramaswamy, Wolf: High-speed prefix-preserving ip address ano-
nymization for passive measurement systems. IEEE/ACM Trans-
actions on Networking 15 (1) (2007) 26-39.

[15] Kuenning, Miller: Anonymization techniques for urls and filena-
mes. Technical report, University of California, Santa Cruz (2003).

[16] Ponce, Loebl, Kencl: Packet content anonymization by hiding
words. In: Demo at IEEE Infocom. (2006).

[17] Brekne, Arnes: Circumventing ip-address pseudonymization. In:
Proceedings of the Third IASTED International Conference on
Communications and Computer Networks, IASTED/ACTA Press
(2005) 43-48.

[18] Kohno, Broido, Claffy: Remote physical device fingerprinting.
IEEE Transactions on Dependable and Secure Computing 2 (2)
(2005) 93-108.

[19] Alllman, Paxson: Issues and etiquette concerning use of shared
measurement data. In: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, ACM New York, NY, USA
(2007) 135-140.

[20] Fan, Xu, Ammar, Moon: Crypto-pan – cryptography-based prefix-
preserving anonymization. http://www.cc.gatech.edu/Computing/
Networking/Projects/cryptopan/ (2004).

[21] Park, Willinger: Self-similar network traffic: An overview. In: Self-
Similar Network Traffic and Performance Evaluation, Wiley Inter-
science (1999) 3-49.

[22] Xu, Fan, Ammar, Moon: On the design and performance of prefix-
preserving ip traffic trace anonymization. In: Proceedings of ACM
SIGCOMM Internet Measurement Workshop (IMW). (2001) 263-
266.

[23] Gamer, Mayer, Schöller: Pktanon project (2007). http://tm.uka.de/
~mayer/pktanon.

