
Demand-Driven Clustering in MANETs
Curt Cramer, Oliver Stanze, Kilian Weniger, and Martina Zitterbart

Institute of Telematics
University of Karlsruhe (TH)

Germany
eMail: {cramer|stanze|weniger|zit}@tm.uka.de

Abstract— Many clustering protocols for mobile ad hoc net-
works (MANETs) have been proposed in the literature. With only
one exception so far [1], all these protocols are proactive, thus
wasting bandwidth when their function is not currently needed.
To reduce the signalling traffic load, reactive clustering may be
employed. We have developed a clustering protocol named “On-
Demand Group Mobility-Based Clustering” (ODGMBC) which
is reactive. Its goal is to build clusters as a basis for address
autoconfiguration and hierarchical routing. The design process
especially addresses the notion of group mobility in a MANET.
As a result, ODGMBC maps varying physical node groups onto
logical clusters.

In this paper, ODGMBC is described. It was implemented for
the ad hoc network simulator GloMoSim [2] and evaluated using
several performance indicators. Simulation results are promising
and show that ODGMBC leads to stable clusters. This stability
is advantageous for autoconfiguration and routing mechansims
to be employed in conjunction with the clustering algorithm.

Index Terms— clustering, multi-hop, reactive, MANET, group
mobility

I. INTRODUCTION

Routing was and continues to be one of the prevailing
research topics in the field of mobile ad hoc networks
(MANETs). In MANETs as well as in static networks, the
introduction of hierarchies may aid in achieving routing ef-
ficiency. However, due to the dynamic nature of MANETs,
one cannot statically assign nodes to subnetworks. Subsequent
node movements are very likely to mix up the assignment and
therefore diminish the benefits of hierarchical routing.

A straightforward way to dynamically assign nodes to sub-
networks is clustering [3]. Here, nodes are grouped together to
form a logical control structure based on their physical prox-
imity and their movement history. Each group of nodes, the
so-called clusters, then forms a subnetwork. E.g. a designated
node in the cluster disseminates an IP address prefix among
its fellow nodes. These designated nodes are called leaders or
sometimes cluster heads.

Subnetworks are referred to as clusters which have been
assigned an IP address prefix common among the participating
nodes. The subnetworks form the basis for hierarchical rout-
ing protocols. The actual process of auto-configuration and
hierarchical routing is beyond the scope of this paper. It is
focused on the issue of building and maintaining clusters.
Therefore, the control structures that are dealt with in the
paper are called clusters. We specifically question whether
the existence of physical groups of nodes, i.e. nodes moving

together in physical proximity over longer time spans, can be
leveraged in order to improve the stability of clusters, which
is an important measure of a clustering protocol’s quality, as
will be explained later. Nodes moving individually will not be
part of clusters, as they are only crossing the path of groups
during small time intervals.

The diameter of a group is likely to be more than one hop.
Imagine for example a group of tourists equipped with some
short-range radio equipment. Therefore, the clustering protocol
should be multi-hop. However, the majority of clustering
protocols proposed in the literature thus far only forms clusters
of one-hop radius (see, e.g., [1], [4], [5], [6], [7], and [3]).

In the same way as routing protocols can be classified
as being either reactive or proactive, clustering protocols
may be as well. A proactive clustering protocol continuously
tries to build and maintain clusters in a MANET decoupled
from the actual necessity to do so (i.e. traffic load). As a
consequence, precious bandwidth is wasted when no traffic
flows and hence no routing hierarchy is actually needed. To our
best knowledge, only one reactive clustering protocol has been
proposed so far, namely Passive Clustering (PC) by Kwon
and Gerla [1]. Contrary to ODGMBC, PC generates one-hop
clusters. The clusters are used to increase the efficiency of
flooding, not for supporting hierarchical routing. Only a subset
of all nodes is allowed to forward flooded packets. Hence,
MAC layer broadcasting conflicts are reduced [8].

This paper discusses design and performance issues of the
protocol named “On-Demand Group Mobility-Based Cluster-
ing” (ODGMBC). It has the following features:

• It is reactive,
• is multi-hop and
• addresses the special situation of a MANET with group

mobility.
The protocol is to be employed together with a reactive

routing protocol. It also works with proactive routing, yet
the routing protocol’s signalling traffic in this case leads to
continuous execution of the clustering process.

The next section gives a formal definition of the clustering
problem under consideration and ODGMBC is presented in
some detail. For comparison reasons, its proactive precursor
GMBC, also developed in our lab, is described briefly.

Section III defines the scenarios used to experimentally eval-
uate ODGMBC by means of simulation. Several performance
indicators are defined and employed to make a head-to-head

comparison of GMBC and ODGMBC. The work presented
in this paper is being compared with previously published
clustering solutions in section IV. The last section concludes
the findings of this paper and points out some directions to be
investigated in subsequent research.

II. GROUP MOBILITY-BASED CLUSTERING

A. Problem Definition

As stated in the introduction, the objective is to develop a
multi-hop clustering protocol. We further required the protocol
to generate non-overlapping clusters, i.e. each node is member
of at most one cluster at the same time. Otherwise, the routing
and addressing mechanisms would have to deal with the
situation of multi-homed nodes. This is not the primary goal,
as it leads to increased complexity.

The clusters should be the basis for hierarchical routing.
By using an auto-configuration mechanism, address prefixes
are assigned to the clusters. The address prefix for a cluster is
maintained by the cluster’s leader. Each node in a cluster has to
know its address prefix. From this requirement, it follows that
only the cluster members need to know their current leader, but
not vice versa. We assume that each cluster can be identified
network-wide by some unique value assigned to it. This unique
value could for example be the leader’s MAC address.

Consequently, a node can be in three different states: It can
either be no member of any cluster (unclustered), member of
exactly one cluster (clustered) or the leader of exactly one
cluster (leader).

As a result of the nodes’ movements, there are several
possible events in the life cycle of a cluster (see figure 1).
Two nodes may meet and form a cluster, one of them declaring
itself to be leader (event create). Nodes can be added to an
existing cluster (event join). Or two clusters may be collapsed
to one (event merge). If a cluster is split in two with one of
the remaining parts having no leader, the cluster has to be
“repaired” accordingly. Nodes may depart from their clusters
(event leave), and a cluster disappears when all members leave
it.

leave create

leader
merge

merge

unclustered

join

clustered

Fig. 1. Finite-state machine for group mobility-based clustering

The last and most significant requirement for ODGMBC is
that it has to be reactive. Most of the clustering protocols pre-
viously proposed in the literature try to (pro-)actively discover
a node’s neighbourhood by periodically broadcasting “hello”-
beacons. By counting the “hello”s received from various nodes
over longer timespans, it is possible to draw conclusions
about the physical proximity of nodes. ODGMBC aims to
demonstrate that passive (reactive) monitoring of the data
traffic is sufficient to detect node neighbourhoods.

B. Proactive Clustering – GMBC

First, ODGMBC’s precursor is described briefly. This pro-
tocol named “Group Mobility-Based Clustering” (GMBC) is
quite simple, therefore suitable for an introductory view on
clustering with group mobility and lending itself to compar-
isons of experimental results.

With GMBC, nodes periodically broadcast “hello”-packets.
The packets are overheard by nodes within radio range. Every
“hello” received from different neighbouring nodes is counted.
If the number of “hello”-packets from a specific node exceeds
a configurable threshold value (with some allowable packet
loss to account for undetected MAC layer collisions; see [8]
for a discussion of this problem), that node is regarded as a
neighbour. Up to this point, the procedure is quite similar to
Toh’s Associativity Based Routing (ABR) [9].

A node declares itself to be a cluster leader if it has
had neighbours for a certain timespan (another configurable
threshold value). The declaration is made by broadcasting a
“create”-packet (event create in figure 1). All nodes which
receive this packet check whether it was sent by one of their
neighbours. If this is the case, they assume to be part of a
group themselves and hence join the advertised cluster (event
join). The joining nodes re-broadcast the “create”-packet in
order to disseminate the cluster information over multiple
hops. Propagation is limited through a hop counter field in
the packet. The hop counter (which is unrelated to the TTL
field in the IP header) is decremented after each hop, stopping
the forwarding when it reaches zero. It is required because
GMBC uses application-layer forwarding.

The cluster structure needs to be maintained due to the
nodes’ mobility. A soft-state approach was adopted. The
leaders have to refresh the cluster state periodically. They do
so by broadcasting a new “create”-packet. To save bandwidth,
this packet replaces the leader’s “hello”-packet and is sent with
the same frequency.

Clusters merge if two leaders get in reach of each other:
The leader with the smaller identifier, i.e. the lexicographically
smaller MAC address, continues to be leader, the other one
gives up. All nodes in the fading cluster will join the persistent
cluster when they first hear its leader’s “create”-beacon.

In GMBC, all nodes only know their respective cluster lead-
ers. They also change their clusters whenever they overhear a
new (or previously unknown) cluster leader. This has severe
implications for the overall cluster stability. In the evaluated
scenarios, the average rate of nodes changing their clusters
was about five times higher than with ODGMBC. With regard

to address auto-configuration and routing, this instability leads
to many route failures.

C. Reactive Clustering – ODGMBC

The goal of reactive protocols is to reduce protocol overhead
when their function is not currently needed. In our case, this
means that the signaling traffic should be kept as minimal
as possible when there is no traffic flow in the network. No
clusters are needed during these periods because hierarchical
routing will not be used when there are no packets to be routed
anyway. In this case, there will only be no traffic if a reactive
routing protocol, such as AODV, is used. Also note that the
routing hierarchy is more beneficial with multiple concurrent
end-to-end connections in the network.

The problem of reactive clustering can be split in two parts.
First, it has to be detected when there is the need for clustering,
i.e. when traffic flows. Second, when it is known which nodes
participate in traffic flows, clusters have to be established and
maintained. These two parts can be regarded as two completely
different protocols with strictly defined interfaces (cf. figure 2).
In particular, the protocols described afterwards are

1) the “Neighbourhood Recognition Protocol” (NRP) and
2) the clustering protocol itself.

Neighbourhood
Recognition
Protocol (NRP)

O
n-

D
em

an
d

G
ro

up
M

ob
ili

ty
-B

as
ed

C
lu

st
er

in
g

(O
D

G
M

B
C

)neighbourhood
status updates

Clustering

IP

MAC

control messages frame reception

Fig. 2. Position of NRP and ODGMBC in the protocol stack

1) Neighbourhood Recognition Protocol: We named the
protocol which is responsible for the detection of traffic flows
“Neighbourhood Recognition Protocol” (NRP). NRP’s task is
to monitor the traffic flow and inform the actual clustering
protocol about the neighbourhood of a node. It maintains a
table which maps a MAC address to the number of packets
received from the corresponding node during a configurable
time period. Each time a frame is received at the MAC layer,
NRP looks up the last hop’s MAC address in the table. If this
address is not found in the table, a new entry is created and a
timer is started. Otherwise, the frame counter associated with

the MAC address is incremented and the timer keeps running
unmodified.

When a timer expires, the frame counter of the correspond-
ing node is compared against a predefined constant threshold.
If the counter exceeds the threshold, the node is regarded as
a neighbour. Consequently, the clustering protocol is notified
of the neighbour’s presence. Additionally, the timer is then
restarted for this node. The clustering protocol is also informed
in case the frame count drops below the threshold during the
time period. In this case, the node loses its status as neighbour
and the timer is not restarted. Thus, the NRP and the clustering
protocol can keep track of an ever changing neighbourhood.

To sum up, the NRP effectively monitors traffic flows
by counting the MAC frames received from different neigh-
bouring nodes. Time is divided into equal-sized intervals
after the first reception of a MAC frame from a previously
unknown node. As a result, the clustering protocol is being
informed about the availability of the nodes asynchronously
and independently by the NRP.

Note that no packet is sent over the network by NRP. It
is purely passive and only communicates with the clustering
protocol entity of the monitoring node.

2) Clustering Protocol: By employing the NRP, monitoring
nodes know which neighbours are present and suitable for
clustering. However, as the neighbourhood recognition only
works in one direction, the detected neighbours have to be
informed of their detection. Informing the neighbour also helps
detecting undirectional physical links. The notification was
implemented in two ways: First, if the monitoring node has
to send an IP packet to the detected neighbour anyway, a
special IP option is placed in the packet header. Second, the
detection of neighbours is announced by broadcasting special
“NEIGHBOUR-INFORM”-packets. As it is very likely that
many neighbours are detected in rapid succession, the MAC
addresses are held in a queue which is flushed after a (short)
predefined time interval. Such a situation is likely to occur
when a reactive routing protocol is used. In the initial route
discovery phase, a node may detect the presence of multiple
neighbours. By using a queue and bundling all the detected
nodes’ MAC addresses into one broadcast message, bandwidth
can be conserved.

Every node keeps record of detected nodes and nodes
which detected itself in two separate lists. The neighbourhood
graph defined by the NRP and the “NEIGHBOUR-INFORM”-
messages forms the basic structure for our clustering algo-
rithm. Only the nodes which are contained in this graph
participate in the clustering process. Therefore, if all traffic
measurements fall below NRP’s threshold value, no neigh-
bours are detected and no clusters are built. This exactly was
the primary goal.

We adopted an approach similiar to “Random Competition
based Clustering” (RCC) [10], which is run by the nodes
contained in the neighbourhood graph. Whenever a node
detects its first neighbour, it waits for a random time interval
(drawn from a uniform distribution). If no other node in its
vicinity has declared itself to be leader within the time interval,

it does so itself. Note that only nodes which have recognized
other nodes as neighbours themselves are allowed to make
a leader declaration. This is done by flooding a LEADER-
BEACON-message. The LEADER-BEACON is forwarded only
by cluster members. Its propagation is limited by a hop counter
in the packet header. Let the maximum propagation distance
be denoted by k. Then k-hop clusters are formed. We will refer
to k as the maximum cluster radius in the following text.

With RCC, conflicts may arise during the leader election
phase. Ties in leader competition are broken as follows: If two
nodes within mutual distance of less than or equal to k hops
declared themselves to be leaders simultaneously, the node
with the lexicographically smaller MAC address has to give
up and become cluster member. By the same method, cluster
mergers are performed: If two groups cross their ways, they
will eventually be merged into one.

Each node records the LEADER-BEACONs it has seen, but
sticks to its current leader as long as possible. A node in the
unclustered state (and having neighbours) enters the cluster of
the leader it hears first.

State is preserved through a soft-state mechanism: The
leaders periodically have to re-broadcast their LEADER-
BEACONs. In case a node has not heard of its current leader
for a prescribed time period, it immediately switches its
membership to the cluster whose leader has the minimum
distance to the node among all known leaders. In case there
are no other leaders, but the node still has neighbours, it
declares itself leader. Cluster partitions are repaired this way.
Otherwise, the node leaves the cluster by changing back to the
unclustered state. The destruction of a cluster is determined
by all nodes leaving it.

NRP was modified as not to count the control messages
sent by the clustering protocol. Otherwise, clusters would not
be destroyed when there is actually no more traffic. This is
because the clustering protocol keeps sending beacons as long
as there are neighbours (as recognized by NRP) which ought
to be clustered.

3) Example: Cluster Creation: To conclude the protocol
description and to illustrate the cooperation of NRP and the
clustering protocol in ODGMBC, the formation of a new
cluster is described as an example. Refer to figure 3 for the
depiction of the following sequence. Note that both nodes m

and n initially are in the unclustered state (hollow circles).
1) After receiving and counting a sufficient amount of

MAC frames from n, the NRP running on m recognizes
n as a neighbour (indicated by the solid arrow).

2) Node m tells n about this event by sending a
NEIGHBOUR-INFORM message (dashed arrow). At
this point of time, m is in the unclustered state and
does not have any neighbours. Hence, it is a potential
leader and therefore starts the timer for the (RCC) leader
election process.

3) Node n receives m’s NEIGHBOUR-INFORM message.
Now that n knows about m having recognized it as a
neighbour, n also regards m as a neighbour (solid arrow
from n to m).

4) Eventually, the timer m set in step 2 expires and causes
m to declare itself leader. It does so by broadcasting a
LEADER-BEACON message.

5) Upon receiving the LEADER-BEACON, node n looks up
the originator in its data structures. It finds m recorded
as a neighbour. As n currently is not member of any
cluster, it joins in with m, forming a cluster of two nodes
with m being the leader.

III. EVALUATION RESULTS

A. Simulation Setup

To evaluate ODGMBC’s functionality and performance, a
prototype module for the ad hoc network simulator GloMoSim
v2.03 [2] was implemented. The deployment scenario is a
pedestrian precinct. There are 300 pedestrians (nodes) dis-
persed over a quadratic area measuring 2000 m × 2000 m.
Each pedestrian is equipped with an 802.11-capable device
having a radio range of 250 m. The node speed ranges from
0.5 m/s to 2.0 m/s. A total of 215 nodes moves individually,
whereas the remaining 85 nodes are divided among six groups
with diameters from one to three hops. For node movement,
the “Reference Point Group Mobility” (RPGM) model [11]
was used. The group centers move according to the “Random
Direction” model [12], with the mean epoch time set to
30 seconds. Individual motion is also generated using the
RPGM model by creating groups with only one node. These
nodes’ positions and movements are identical to those of the
respective group centers.

Network traffic is generated using a simple model: There is
a fixed number of connections with fixed endpoints (per sim-
ulation run). Connection endpoints are chosen independently
and identically distributed (i.i.d.) among all 300 nodes using a
uniform random distribution. The connections start uniformly
i.i.d. within the first 20% of simulated time, which was chosen
to be 600 seconds (10 minutes). They stop simultaneously with
the simulation. Over each connection, packets of 512 bytes
length are sent with a constant rate of two packets per second
from the first to the second endpoint. Transmission takes place
during the full connection duration.

A load of 30 concurrent connections was put on the net-
work, resulting in a maximum packet loss of 5%, which was
confirmed in additional simulation runs. Routes are determined
with AODV and its default parameters. Note that each of the
results presented was obtained combining three i.i.d. random
samples of the mobility scenario and three i.i.d. random
samples of the traffic scenario. All results are averaged over
the resulting 9 simulation runs, leading to reasonable statistical
significance with comparably low simulation costs.

Although they may be chosen independently, the period
length of the NRP and the period length of the leader beacon-
ing were set to equal values, respectively. This decision will
be re-evaluated in our future work, but the independent choice
has the drawback of multiplying the non-negligible simulation
costs with another factor.

ODGMBC was simulated with period lengths of 5 s and
60 s. For comparison, GMBC was simulated with the respec-

2 3 4 51

m m m m

n

m

n n n n

m recognizes n

as a neighbour
n regards m

as a neighbour
m declares itself leader,
sends LEADER-BEACON

m sends NEIGHBOUR-
INFORM to n

m and n form a cluster

Fig. 3. Example: Cluster creation with ODGMBC

tive parameters set to reflect period lengths of 5 s and 30 s. In
both cases, the maximum cluster radius was set to be 3 hops.
To recognize a node as a neighbour, one received packet per
6 seconds suffices.

B. Evaluated Performance Indicators

There are several performance indicators of interest for the
evaluation of a clustering protocol (see also [13]). The number
of leaders in the network and the average size of clusters
give hints whether the protocol works properly. By taking into
account the “noise” in both figures, a first estimate of cluster
stability is obtained. As mentioned before, cluster stability
is of high importance for the targeted application, namely
automatic addressing and hierarchical routing. Therefore, the
change frequency of cluster leaders and cluster members are
additionally inspected. The mean duration of nodes being in
the leader state and the mean sojourn time of nodes in different
clusters also help in evaluating cluster stability.

Also, the overhead incurred by the clustering protocol has
to be measured. It is normalized both as packets per period
and bytes per second to be comparable across different choices
of the period values.

C. Simulation Results

The results of the simulations made are described in the
following sections.

1) Number of Leaders and Cluster Size: First, compare the
number of leaders and average cluster size with ODGMBC
using a 5 s period (see figure 4) as opposed to those of GMBC
with the same period (see figure 5). The slowly ascending
curve showing ODGMBC’s average cluster size suggests that
the protocol works as expected: It reacts to the increasing
traffic load. Compared to GMBC, the curve showing the
number of leaders with ODGMBC is considerably smoother.
This is a first hint that cluster stability is better with ODGMBC
than with GMBC.

The peak at the beginning of GMBC’s leader curve is the
result of a large number of leader election conflicts. They arise
because all nodes nearly simultaneously begin clustering. Due
to the high variability, clusters tend to be smaller and more
leaders are present than with ODGMBC.

2) Leader Change Frequency: Comparing the leader
change frequencies in both configurations (see figure 6), it
becomes obvious that GMBC performs considerably worse
(1.54 changes/second) than ODGMBC in this point (0.21

mean number of cluster members

number of leaders

Time [s]
600540480420360300240180120600

40
35
30
25
20
15
10

5
0

Fig. 4. Number of clusters and cluster size (ODGMBC, 5 s)

mean number of cluster members

number of leaders

Time [s]
600540480420360300240180120600

40
35
30
25
20
15
10

5
0

Fig. 5. Number of clusters and cluster size (GMBC, 5 s)

changes/second). Also see table I for the other configurations
mentioned before and averages of the performance indicators
regarding stability and overhead.

There is a simple explanation for the high stability of
clusters with ODGMBC. Other than with GMBC, nodes
“stick” to their leaders as long as possible – they only change
their clusters when their previous leaders’ beacons have not
been overheard recently (refer to section II-C.2). Also in
contrast to GMBC, not every node has the ability to declare
itself leader in ODGMBC. Remember from section II-C.2 that

ODGMBC, 5 s
GMBC, 5 s

Time [s]
600540480420360300240180120600

5

4

3

2

1

0

Fig. 6. Leader changes per second

only nodes which have recognized other nodes as neighbours
themselves are allowed to do so. Last, because nodes keep a
list of recently overheard leaders, they can immediately join
an existing cluster when they need to. With GMBC, nodes
do not keep a comparable list and therefore always create a
new cluster in these situations. Many conflicts arise due to this
design decision.

3) Cluster Change Frequency: Regarding the cluster
change frequency, ODGMBC again clearly outperforms
GMBC (see figures 7, 8). The same reasons as for the leader
change frequency apply here.

Time [s]
600540480420360300240180120600

50

40

30

20

10

0

Fig. 7. Cluster changes per second (ODGMBC, 5 s)

4) Stability and Overhead: Table I gives an overview of
the stability and overhead indicators for the simulated config-
urations. Once more, it can be seen that ODGMBC is much
better than GMBC in terms of the cluster sojourn time and
average time of nodes being in the leader state. Statistically,
the significance of the difference could not be rejected at an
error level of 5%.

For both protocols, the increase of the period durations
lead to generally better performance indicators. This result
has to be interpreted carefully. It only shows that, as expected,

Time [s]
600540480420360300240180120600

50

40

30

20

10

0

Fig. 8. Cluster changes per second (GMBC, 5 s)

the less often status updates are made (i.e. packet are sent),
the less often the state actually changes (i.e. nodes change
their clusters). The longer the periods are, the more the risk
of having stale state at the nodes increases. There is an
obvious trade-off between the update frequency (which clearly
is correlated with the generated overhead) and the actuality of
state.

Compared to GMBC, ODGMBC’s overhead is slightly
higher in the tested scenario. This mainly follows from the
high overall traffic load. As ODGMBC is a reactive protocol,
the overhead should be proportional to the network load.
ODGMBC has to send more messages than GMBC because
of its neighbourhood detection scheme. Also, these messages
are quite long because the MAC addresses of the recognized
neighbours are appended. In the scenario, nodes have 15
neighbours on average and MAC addresses are 48 bits long.

To sum up, our simulation results indicate that ODGMBC
is working as desired. It reactively builds clusters of high
stability. In its current design, protocol overhead is a drawback
in dense traffic scenarios due to the neighbourhood detection
scheme, but some ideas to reduce it are outlined in the last
section.

IV. RELATED WORK

For a thorough yet slightly dated review of clustering
protocols and the goals associated with them, see [3]. [4]
and [5] present some simple one-hop clustering mechanisms.
The only reactive clustering protcol known to us is introduced
in [1]. However, it presents a one-hop clustering protocol with
the goal of collision reduction in flooding. Effects of different
leader election rules on cluster stability are examined in [13].

Our work in part benefited from the insights provided
in [10]. As mentioned before, “Random Competition based
Clustering” strongly influenced our leader election procedure.
The notion of group mobility was defined with the long-
term stability of physical node neighbourhoods. These neigh-
bourhoods themselves are defined by physical (radio) links.
Physical link stability has been considered as a route selection

Configuration Leader Changes [1/s] Cluster Changes [1/s] Leader Stability [s] Cluster Sojourn Time [s] Byte/s Packets/Period
ODGMBC, 5 s 0.21 1.42 46.07 100.47 38.96 3.88
ODGMBC, 60 s 0.07 1.07 70.75 181.71 5.80 9.10
GMBC, 5 s 1.54 7.21 14.53 28.96 6.55 1.93
GMBC, 30 s 0.36 1.79 40.26 89.94 5.90 10.40

TABLE I
SIMULATION RESULTS – STABILITY AND OVERHEAD

metric by several independent research groups. See [9], [14]
and [15] for results.

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated whether a reactive
clustering protocol with group mobility is feasible. A possible
solution has been presented. The protocol was implemented
and tested by means of simulation. It could be shown that the
approach indeed yields stable clusters. The key improvement
of ODGMBC over a proactive clustering protocol is that
it does not consume any bandwidth when no clusters are
currently needed.

Nevertheless, there are several aspects of enhancements left.
Some possible approaches for reducing the protocol overhead
are:

• One possibility is to reduce the size of the NEIGHBOUR-
INFORM messages by removing the MAC addresses
from them. Now nodes take part in the clustering process
which have not been considered before. These are the
nodes whose packet counts do not exceed the threshold
level. This change could compromise cluster stability
because the number of potential leaders increases. More
conflicts arise during the initial election phase. The effects
of this subtle change have to be evaluated in detail.

• Another option is not to use NEIGHBOUR-INFORM
messages at all. This approach might sound strange
at first sight, as the whole clustering protocol relies
on these messages. However, in the design process, it
was not taken into account that nodes could count how
many packets they sent per period themselves. Thus, they
would automatically know whether there is the need for
clustering without sending any additional message. The
total overhead would reduce to that of the LEADER-
BEACON messages. By this modification, the detection
of unidirectional links is no more possible and packet
loss is not considered. Again, care has to be taken for
the possible changes in cluster stability.

Apart from these protocol alterations, another direction in
future research has to be the coupling of ODGMBC with
an address auto-configuration mechanism. A large degree of
interplay between the two mechanisms of clustering and auto-
configuration is required. See e.g. [16] for a discussion of
issues arising when using auto-configuration. Then, a routing
protocol and location management can be layered on top.
These problems are both challenging and interesting steps in
future research.

ACKNOWLEDGEMENT

Many thanks to the anonymous reviewer who provided
valuable comments. Funding was provided by the German Fed.
Ministry of Education and Research as part of IPonAir.

REFERENCES

[1] T. J. Kwon and M. Gerla, “Efficient flooding with passive clustering (pc)
in ad hoc networks,” ACM Computer Communication Review, vol. 32,
no. 1, 2002.

[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, “Glo-
mosim: A scalable network simulation environment,” UCLA Computer
Science Department, Tech. Rep. 990027, 1999.

[3] M. Steenstrup, “Cluster-based networks,” in Ad Hoc Networking, C. E.
Perkins, Ed. Upper Saddle River, NJ: Addison-Wesley/Pearson Edu-
cation, 2000, pp. 75–138.

[4] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 15,
no. 7, pp. 1265–1275, 1997.

[5] S. Basagni, “Distributed clustering for ad hoc networks,” in Proceedings
of the 1999 International Symposium on Parallel Architectures, Algo-
rithms, and Networks (I-SPAN’99), A. Y. Zomaya, D. F. Hsu, O. Ibarra,
S. Origuchi, D. Nassimi, and M. Palis, Eds. Perth/Fremantle, Australia:
IEEE Computer Society, 23.–25. June 1999, pp. 310–315.

[6] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan, “A cluster-based
approach for routing in dynamic networks,” ACM SIGCOMM Computer
Communication Review, pp. 49–65, Apr. 1997.

[7] D. J. Baker and A. Ephremides, “The architectural organization of a
mobile radio network via a distributed algorithm,” IEEE Transactions
on Communcations, vol. COM-29, no. 11, pp. 1694–1701, Nov. 1981.

[8] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” ACM Wireless Networks, vol. 8,
no. 2, pp. 153–167, Mar. 2002.

[9] C.-K. Toh, Ad hoc mobile wireless networks: protocols and systems.
Upper Saddle River, New Jersey: Prentice Hall PTR, 2002.

[10] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with mobile
backbones,” in Proceedings of the IEEE International Conference on
Communications (ICC), New York, NY, Apr. 2002.

[11] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model
for ad hoc wireless networks,” in Proceedings of ACM/IEEE MSWiM
1999, Seattle, WA, Aug. 1999.

[12] C. Bettstetter and C. Wagner, “The spatial node distribution of the
random waypoint mobility model,” in Proceedings of the 1st German
Workshop on Mobile Ad-Hoc Networks (WMAN), ser. GI Lecture Notes
in Informatics, no. P-11, Ulm, 25.–26. Mar. 2002, pp. 41–58.

[13] C. Bettstetter and R. Krausser, “Scenario-based stability analysis of
the distributed mobility-adaptive clustering (dmac) algorithm,” in Pro-
ceedings of the 2nd ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), Long Beach, CA, USA, 4.–
5. Oct. 2001, pp. 232–241.

[14] X. Hong and M. Gerla, “Dynamic group discovery and routing in ad
hoc networks,” in Proceedings of the First Annual Mediterranean Ad
Hoc Networking Workshop (Med-hoc-Net 2002), Sardegna, Italy, Sept.
2002.

[15] M. Gerharz, C. de Waal, M. Frank, and P. Martini, “Link stability
in mobile wireless ad hoc networks,” in Proceedings of the IEEE
Conference on Local Computer Networks (LCN), Tampa, Florida, Nov.
2002.

[16] K. Weniger, “Passive duplicate address detection in mobile ad hoc net-
works,” in Proceedings of the Wireless Communications and Networking
Conference (WCNC), vol. 3, Mar. 2003, pp. 1504–1509.

