IEEE Copyright Notice

(© 2008 IEEE. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

Decision Process for Automated Selection of
Security Protocols

Lars Volker, Christoph Werle, Martina Zitterbart
Institut fiir Telematik
Universitdt Karlsruhe (TH), Germany

Abstract— Today’s Internet has a growing number of protocols
and mechanisms to protect data in transmission. One can choose
from IP Security (IPsec), Transport Layer Security (TLS), and
many other protocols. However, available security protocols and
mechanisms are not widely used due to usability issues [1],
[2] and because users often underestimate the risk their data
is exposed to. An approach to solve this problem consists
of automated selection and configuration of available security
protocols in a user-transparent way. In this paper, we present
a method for automatically choosing the right security protocol
based on Security, Quality of Service, and Energy Consumption
aspects. We describe the necessary aspects, value functions, and
a hierarchical, flexible, and efficient decision process.

I. INTRODUCTION

With the present multitude of security protocols and count-
less configuration and misconfiguration options, users are often
challenged to take decisions they do not fully understand.
In order to avoid this situation, our vision iS to automate
the process of choosing and configuring a security protocol
appropriate to the needs of the user. To enable this automated
approach, a set of policies needs to be given and information
on a user’s preferences is required.

However, one cannot just add a security protocol to a
network connection without the security protocol influencing
others aspects as Quality of Service and Energy Consumption.
In previous work [3], we have shown that Security and
Quality of Service influence each other and cannot be taken
into account separately. This is also true for the selection
of security protocols, which is the subject of this paper. In
addition, we also consider energy consumption, since the cryp-
tographic algorithms used to provide security add a significant
computational overhead, which in turn results in increased
energy consumption.

In this paper, we focus on the security protocol selection
process, which basically consists of the following steps:

e Collecting all available candidates.

« Filtering out candidates based on requirements.

« Evaluating each candidate.

« Selecting candidate with highest rating.

Candidates are instances of security protocols, for example
cipher suites of TLS/SSL!. For a given connection, the system
collects all applicable candidates by checking all available

I'The cipher suite describes the security protocol configuration as a possible
choice in the protocol negotiation and states, in the case of TLS/SSL,
the algorithm for key exchange, authentication, data encryption, and data
authentication. In addition the key sizes of the algorithms are included.

security protocols for support of protecting the connection
under consideration. We discuss the detection of applicable
candidates detailed in Section II. The filtering of candidates
is based on requirements specified by administrative policies,
e.g., minimal acceptable key length or required bandwidth. In
the next step each candidate is rated. Our solution is based on
the multi-attribute utility theory (MAUT) and follows a hierar-
chical approach as introduced in Section III. At first, for each
category (Security, Quality of Service, Energy Consumption)
ratings are calculated, which are subsequently aggregated to an
overall rating. After having filtered and ranked all candidates,
one just needs to choose the candidate with the highest rating,
which is the security protocol with the highest utility to the
user. These steps are presented in detail in Section III.

One difficulty in constructing such a process is finding
comparable parameters for each category and then rating them.
In Section IV we present our criteria and in Section V we
show some exemplary value functions to rate these criteria.
Furthermore, the process must allow for aggregation of ratings
of different categories, e.g., Security and Quality of Service,
in order to find a meaningful overall rating. This is presented
in Section VI. We close this paper with Conclusion and Future
Work in Section VIIL

In this paper, we present our solution for the automated
selection of security protocols. The contributions of this paper
include the automated, efficient, hierarchical, and flexible pro-
cess for choosing a security protocol for a given connection,
based on policy and requirements. We identify important Se-
curity, Quality of Service, and energy consumption properties,
and define functions to map the respective attribute values to
utility ratings. We keep our solution modular, allowing for
the inclusion of additional properties, and flexible by allowing
for adjustment of the process using weights and parametrized
functions.

II. THE SYSTEM

This paper focuses on the selection of security protocols
based on criteria defined in this paper. Since we implemented
this process for selection of security protocols as an integral
part of the Auto-Configuration of Communication Security
(ACCS) system, this section will give a brief overview of the
system.

The major goal of ACCS is to assist users by automatically
selecting and configuring security protocols based on (admin-
istratively) defined policies. Once configured, ACCS is able

to decide, whether a connection needs to be protected. If so,
ACCS autonomously detects, which locally available security
protocols, for example IPsec, TLS, or any other standardized
security protocols, are supported by the communication part-
ner. If none of the detected alternatives do comply with the
policy applicable to the connection, ACCS prevents accidental
data leakage by keeping the communication from taking place.
If there are policy-conforming alternatives available to secure
the connection, the alternative which most of all suits the
preferences of the user, is selected and—transparently to the
user—applied to the connection.

Figure 1 presents the basic architecture of ACCS. The
central component is the Security Manager, which basically is
the decision making component. Using the Detection Modules,
the Security Manager can detect important events, e.g., new
network connections, and decide, whether action has to be
taken. This decision is based on policies stored in the Policy
component, which can be accessed by applications (allowing
for per-connection policy specification) and administrators
(allowing for modification of global policies, which overrule
any user-given policy). The Evaluation Modules represent
decision algorithms and the Knowledge Base stores needed
information for the selection process.

Application
i I Security Evalustion mod
P T
777777777777 [‘ Moty ——
W

IPsec

Packet i
Filter ;

Fig. 1.

ACCS Architecture

The Security Manager is accompanied by adapters used to
connect to a available Security Protocols. In Figure 1 TLS/SSL,
IPsec, and Packet Filter are depicted as exemplary adapters.
While the Packet Filter is not a Security Protocol in the
traditional sense, it can be used to influence the observed
traffic, e.g., by dropping packets.

The basic operation of ACCS starts out with an event of a
detection module, e.g., a new socket is opened and therefore
a new network connection is about to be established. This
event is received by the Security Manager and, based on the
specified policy, the Security Manager decides whether and
how to take action. If action has to be taken, the Security
Manager contacts the Adapters to gather information about
locally available Security Protocols, which are supported by
the remote system, and how they can protect the network
connection using the description carried by the detection event.
Each Adapter can return zero or more protection options,

called candidates for the remainder of this paper. Commonly,
a security protocol does not return only one candidate but
a list of candidates based on different options it has. The
TLS/SSL adapter, for example, will usually return the list of
available cipher suites. The selection process works on these
returned candidates and instructs ACCS which action to take.
The adapters of ACCS will finally implement the required
changes to the communication traffic.

III. OUR APPROACH

In this section, we give an overview of our approach before
detailing individual parts in the following sections.

In order to select the “best” solution, the aforementioned
steps have to be taken. Collecting of candidates is performed
by ACCS, as presented in Section II. To filter out candidates
and to evaluate each candidate, one has to describe the
candidates in a suitable way, i.e., enabling comparability be-
tween candidates. We focus on the following aspects: Security,
Quality of Service, and Energy Consumption. Section IV
goes into details of the description of the criteria used to
differentiate between candidates.

Additionally, a description of the term “best” is needed,
which may vary depending on many aspects, e.g., the user,
the user’s location, or the service being used. The problem
of selecting the “best” alternative out of a set of possible
alternatives, based on defining and differentiating attributes,
i.e., criteria, is well known in decision theory. Those multi-
attribute problems can be dealt with using a variety of meth-
ods, for example the Analytic Hierarchy Process [4], ideal
point methods as TOPSIS [5] or ELECTRE [6], or multi-
attribute utility theory (MAUT) [7]. Our approach uses the
afore-mentioned MAUT, which will be sketched in this section,
to calculate a rating for each available candidate.

However, being able to describe the candidates (a;) using
criteria (c;) and choosing a decision-making method is not
enough; one also needs to define how to find the “best”
solution in a given situation. This information is stored in
the Policy component introduced in Section II. A policy can
define requirements to omit unsuitable candidates, and values
to parametrize the decision process: weights and parameters.
The weights (w;) are used to control the relative importance
of the criteria to the overall rating. The parameters are used
to adjust the value functions. For example: the parameters
used in value function v; influence the resulting utility of
criterion ¢;. Using MAUT, for each criterion ¢;, 1 < j < 'm,
a (potentially parametrizable and therefore reusable) value
function v; needs to be defined, which maps the attribute value
of alternative a; with regard to criterion c;, i.e. ¢j(a;), to a
utility value representing the actual usefulness of the attribute
value to the user. Some specific value functions for the relevant
criteria (Security, Quality of Service, Energy Consumption) are
presented in Section V.

To generate an overall rating, we use the weighted sum
of the single utility values to aggregate the individual utility

values, which yields the following equation:
v(ai) =Y wjxv;(c;a;)) Q)
j=1

This gives us a weighted sum over all criteria utilities using
dedicated value functions for each criterion. We decided to
use the weighted sum for aggregation as it is intuitive, and
more complicated aggregation methods are not required in
this context. Having calculated this total utility value of each
candidate, we are now able to compare candidates.

Taking into account the problem and design space, we opt
to use a hierarchical approach. We calculate the weighted sum
of each aspect (Security, Quality of Service, Energy Consump-
tion) and calculate the overall weighted sum afterwards. This
hierarchy is further detailed in Section IV.

The notions and abbreviations are summarized in Table I.

Meaning | Abbreviation
Alternative 1 a;

Criterion j cj

Weight for criterion j w;

Attribute value of a; with regard to criterion ¢; | c¢;(a;)
Value function for criterion c; v

Total value of alternative a; v(aq)

TABLE I
ABBREVIATIONS

IV. CRITERIA

In this section, we present our description of security mech-
anisms, which forms the foundation for the subsequent rating.
The selection of a certain security mechanism does not only
influence the security of the communication, but also leads to
multiple implications in terms of other aspects, e.g., Quality
of Service and Energy Consumption. The main reason for
this influence is the computationally expensive cryptography.
The calculation of cryptographic algorithms uses additional
memory and CPU cycles, and therefore electrical power. It
also introduces latency and latency jitter into packet processing
and possibly limits achievable throughput. For this reason, we
choose to include Quality of Service and Energy Consumption
in the following description of criteria. All of the following
criteria have to be reported by the security adapter, which de-
tected the corresponding candidate. The measurement of some
of the criteria, e.g., energy consumption, is very challenging
and presents an active research topic. As the measurement of
these values is not a central point of this paper, we will only
briefly sketch available methods later on.

In the following sections, criteria used to describe alterna-
tives are presented with a short motivation of their use. We
organize the criteria hierarchically as depicted in Figure 2,
which also gives a rough overview over the criteria used.

A. Security

Measuring and comparing security or defining a degree
of security is a difficult task. Cryptographic primitives, e.g.,

Best alternative

Security) QoS Energy

Effective Bitstrength Latency

Protocol Properties Jitter
Forward Secrecy Overhead
Layer Throughput
Range
Replay Protection

- J

Fig. 2. Hierarchy of criteria

encryption algorithms, provide a certain amount of security
depending on the algorithm used and important configuration
parameters such as the key length in use. Although the key
length is an often used metric to compare the security of cryp-
tographic primitives, it does not reflect the security provided
by a primitive well. The key length allows for estimation
of resistance against brute force attacks, but attackers must
be supposed to use the currently best known attack on any
primitive under consideration. As the assessment of the quality
of a cryptographic algorithm is a complex and error-prone
task, we will resort to using existing recommendations. Many
governmental and scientific institutions regularly publish rec-
ommendations on the strength of cryptographic primitives.
Therefore, to compare cryptographic primitives, we will use
the effective bitstrength as presented in the next section.
Afterwards we consider protocol-specific security aspects.

1) Effective Bitstrength: The effective bitstrength or com-
parable algorithm strength, as defined by the NIST Com-
puter Security Division [8], defines a comparison measure
for cryptographic algorithms taking the best currently known
attack into account. AES for example is currently supposed
to provide an effective bitstrength equivalent to the actual key
length used, whereas the Triple DES algorithm, using three
independent keys with a key length of 56 bit, is supposed
to provide an effective bitstrength of about 112 bit. Analo-
gous estimations of the strength provided by cryptographic
algorithms are also given for primitives based on e.g., Integer
Factorization Cryptography (IFC), Finite Field Cryptography
(FFC), and Elliptic Curve Cryptography (ECC).

The cryptographic primitives we take into consideration
when evaluating the overall effective bitstrength of a security
protocol are:

« Key Exchange

« Authentication

« Encryption

« Message Authentication

Depending on the security demand of the user and the behavior
of an expected attacker—as defined by the attacker model—
not all of the primitives listed above are necessary to provide
adequate protection. If a user only wants to assure the in-
tegrity of exchanged messages, the strength of an encryption
algorithm, if present at all, will be rather irrelevant to the user.

As a further example, when assuming a passive attacker,
only key exchange and message authentication are potential
targets and, therefore, are the only primitives included in an
assessment of the security protocol.

For the aforementioned reasons, we give users the possibil-
ity to define, which of the four primitives defined above they
actually need and consequently want to be taken into account.
To determine the effective bitstrength ebs; of a security mech-
anism a; under inspection, we use the minimum operator on
the individual effective bitstrength of the primitives demanded
by the user?:

ebsi = min(ebsi,keyexv ebsi,autha ebsi,encv ebsi,mac) (2)

This estimation of the effective bitstrength of a security
mechanism ebs; forms the first criterion for the later utility
analysis.

2) Protocol Properties: In this section we identify generic
parameters to describe important, security-relevant parameters
of network protocols. We will use the following criteria for
description of protocol properties:

Layer

The ISO-/OSI layer at which a security protocol is
located determines, which protocols and which part
of the protocol data unit the cryptographic mecha-
nisms are applied to.

Range

The range describes how far a security protocol
reaches. It could only protect as far as one hop as in
WEP or provided an end to end protection as in TLS.
Figure 3 provides two examples: The communicating
applications on Node A and Node B exchange data.
Applying a security protocol working on the data link
layer, e.g., WEP, offers protection for layers above
the data link layer but only over one hop. IPsec in
transport mode provides protection for layers above
the network layer and in this example end-to-end
protection.’

Forward Secrecy

To differentiate between varying degrees of forward
secrecy, this property is assigned to the protocol.
When using the Diffie-Hellman (DH) key exchange,
for example, the protocol determines when fresh
exponents are to be generated and therefore deter-
mines the degree of forward secrecy provided. We
differentiate between the following degrees:

none Both communication partners always use
the same DH exponents.

partial One communication partner uses a fresh DH
exponent whereas the other one uses a static
one.

2For the context of this paper, the equation is slightly simplified and does
not show how to completely leave security primitives out of the evaluation.
However, it is possible to either set the given effective bitstrength ebs; , of
the primitive = to 1 or introduce boolean factors for each primitive.

3Please note that security protocols can commonly only protect protocols
on top of them.

Node A Node B

..................... Data transfer
I Layer: 2; Range: 1-Hop
Layer: 3; Range: End to End

Application

Application

Internet Access Router Internet Access Router

Physical ‘ Physical (’% Physical ‘

Fig. 3.

Transport Transport

Network Network

Network ‘ Network ‘

Data Link Data Link

Data Link ‘ Data Link ‘

Physical

Protocol properties: Range and Layer

full Both communication partners generate a

fresh DH exponent.

TLS, for example, allows DH with static/long-lasting
keys and DH with ephemeral/short-time keys. In the
first case TLS can only guarantee partial Forward
Secrecy, since the DH exponents (of at least one
communication partner) are used for a very long
time and stored on the server. Other protocols, like
IPsec, might even dynamically reuse DH exponents
when encountering high load. This, however, might
not negatively affect the Forward Secrecy.
Replay Protection

Boolean parameter describing whether the protocol
provides replay protection—replay protection keeps
the attacker from successfully replaying authenti-
cated messages into the communication.

B. Quality of Service

As shown at the beginning of this section, the choice
of a security mechanism does affect the Quality of Service
parameters of a connection. To model this behavior we will
use the following criteria:

Latency
Applying cryptographic operations introduces a cer-
tain amount of latency in the packet processing. This
latency, e.g., arises from necessary computations,
memory allocations, and bus transfers.

Latency jitter
Additionally, the introduced latency is subject to
jitter, especially in non real-time operating systems.
In the common case, there are many processes com-
peting for resources with hard predictable scheduling
properties. This introduces hard to predict latency
jitter.

Throughput
The throughput achievable with a security protocol
is limited by the link capacity or alternatively the
processing speed of the cryptographic mechanisms
to be applied. The achievable throughput is therefore
used as a criterion.

Overhead
The overhead caused by additional packet headers
added by the security protocol in number of bytes.

Latency, latency jitter, and throughput also depend on the
size of the data to which cryptographic operations have to be
applied. As a simple example consider only two alternatives
to perform cryptographic calculations: the standard CPU and a
cryptographic accelerator card. As shown in comparisons [9],
for small packet sizes the standard CPU often delivers bet-
ter performance than dedicated cryptographic hardware. This
effect is due to the high overhead of necessary bus accesses
to transfer data to and from the cryptographic hardware. To
model this behavior, we use a traffic profile concept and
allow the user to assign this traffic profile to a policy. The
traffic profile consists of three classes: small, medium, and
large packets, as defined in Table II. Given the estimated
probabilities p, for each packet size x of an application’s
packet profile and measurements at the defined reference
points, we calculate the expected average latency L;, latency
jitter J;, and throughput 7; for each alternative a; as follows:

L; = p12g * L; 108 + psi2 * Li 512 + P1soo * Lijisoo (3)

The expected average latency L; describes the latency to be
expected for the security mechanism and traffic profile under
consideration.

Ji = p1ag * Ji 128 + D512 * Ji 512 + P1soo * Jijis00 (4)

In contrast to a strict definition of latency jitter, Equation 4
does not use the maximum operator to determine an alter-
native’s jitter. Instead, it allows the overall jitter assigned to
alternative a; to be influenced by the traffic profile. If only
a small fraction of the expected traffic causes high values
for jitter, this results in a better overall jitter value for the
alternative. On the other hand, if nearly all traffic is part
of a packet class with high jitter, the resulting overall jitter
will be high, too. Therefore, by using the expected average
latency jitter J;, we try to reduce the overall jitter introduced
by cryptographic mechanisms. If the strict definition of jitter
was prefered, one would have to use the maximum operator
for all packet sizes s with a probability ps # 0.
Ti=> =L« T, ,s =128,512,1500

5P
where 5p = > _ s % ps

®)

As mentioned before, the traffic profile influences the achiev-
able throughput. Equation 5 yields the throughput, which is
to be expected for an alternative, i.e., a combination of the
hardware used, the cryptographic mechanisms applied, and the
traffic profile of the connection.

If there is more than one hardware or software option
to perform cryptographic calculations for a specific security
mechanism, we consider each option an alternative of its own.
If, for example, the cryptographic operations for a specific TLS
cipher suite can be performed on the CPU or a cryptographic
accelerator card, this yields two candidates, which offer the
same security properties but differ with regard to their QoS
properties. Based on these estimations, for each parameter a
QoS Utility is then calculated as described in Section V.

Packet type [Size [Byte] [Reference point [Byte]

Small 0 - 256 128

Medium 256 - 768 512

Large >768 1500
TABLE II

TRAFFIC PROFILE

C. Energy Consumption

As the number of mobile devices is growing, energy
consumption is becoming a critical aspect when applying
security mechanisms. Therefore, additional energy consumed
in order to provide security to users, should also be con-
sidered. Energy consumed to provide cryptographic services
differs depending on the cryptographic primitives used. Further
factors influencing the energy consumed for cryptographic
operations are the hardware the calculations are performed
on, and the implementation of the mechanisms—be it in
hardware or in software. As energy consumption also depends
on the packet size [10], we will use a traffic profile dependent
calculation of the energy cost associated with an alternative.
The adapters of ACCS therefore have to report the cost to
apply an alternative’s cryptographic mechanisms for each of
the packet sizes defined in the traffic profile. Then an expected
average energy consumption for alternative a; under a traffic
profile can be calculated by Equation 6.

L = p1og * B 108 + Ps12 * Ej 512 + p1soo * Eiis00 (6)

Currently, measurement of energy consumption is a non-
trivial task due to the number of hardware components in-
volved. A trivial possibility to include at least the energy
consumed by the CPU consists in counting the cycles used
to perform crypographic calculations. However, this does not
reflect the actual cost associated with specific instructions.
Today’s CPUs often possess multiple performance counters,
which enable a low-overhead on-chip measurement of a se-
lection of instructions. These performance counters can also
be used to obtain a more exact online energy estimation by
counting energy-expensive instructions [11]. A prequisite to
apply these energy counters is, that it is known how much
energy is consumed for a specific instruction. If this is the
case, we can measure the overhead in energy consumption
caused by additional security mechanisms and additionally
keep an account of the overall energy consumed for security
mechanisms.

V. VALUE FUNCTIONS

By now, we have defined criteria which represent important
aspects in choosing the most appropriate security protocol
at hand. Subsequently, each alternative needs to be assigned
a utility value with respect to each criterion expressing the
attribute value’s utility to the user. The criterion of effective
bitstrength will be used as an example to demonstrate the
application of value functions. We define a minimum and an

optimum attribute value with the following meaning: Each
alternative offering a smaller effective bitstrength than the min-
imum, must not be used. The minimum effective bitstrength
is therefore used to filter out alternatives not fulfilling policy
requirements. This is necessary to handle compensatory effects
of MAUT: An alternative, violating one criterion, but scoring
high regarding most other criteria, could achieve a higher
rating than any other alternative and hence, would be selected
if no prior filtering had been applied. Therefore, at least
security-related criteria have to be used to filter out alternatives
violating any single criterion. By setting the optimum effective
bitstrength, the user indicates that a higher effective bitstrength
may of course be used, but does not further increase the
alternative’s utility to the user in comparison to the optimal
attribute value.

Rating

A
1.0
08 | Filtered

out
06 _|
04 _
02 __|
0.0 Effective
! ! Bitstrength
Minimum Optimum
Fig. 4. Example of a value function: Effective Bitstrength

As the effective bitstrength is a security-related parameter,
one might argue that a higher effective bitstrength is to be
preferred, always. Although this may be true for some cases,
e.g., attackers with large budgets and therefore large process-
ing power, in general a user-dependent optimal value can be
defined for which an assumed attacker with its constrained
resources is supposed to be unable to carry out a successful
attack. The decision between alternatives with an equal rating
with regard to effective bitstrength is then dependent on the
other criteria. Likewise, for every critierion an individual value
function has to be defined. The example in Figure 4 uses
a simple linear value function. To enable users to express
their ideas of utility as exactly as possible also more complex
functions, e.g., based on an exponential or logarithmic function
could be used. Any value function has to map the attribute
values to the interval [0; 1], with 1 indicating the highest utility
to the user and O representing a permissible option but with
no associated utility. To model a rapid decrease in utility, e.g.,
for increasing latency, the corresponding value function could
be defined as depicted in Figure 5. To allow users, to also
express indifference between ranges of attribute values, one
can also define step functions, allowing them to set the range
for which no distinction in rating is to be made. For reasons of
transparency however, the simplest function, powerful enough

Rating

1.0

08 __|

06 __|

04 __|

02 __|

0.0

Latency

Optimum Maximum

Fig. 5. Example of a value function: Latency

to express a user’s intention, should be used to map attribute
values to utility values.

VI. AGGREGATION

The last step in order to obtain a total ranking for each
alternative consists in aggregating the now available utilities of
the single criteria for each alternative. The weighted sum, we
use for aggregation (see Equation 1), on the one hand, depends
on the utility values of an alternative. On the other hand, the
weights in front of each value function allow users to express
the relative importance of criteria to them. A characteristic of
MAUT aggregation methods, e.g., the weighted sum we use, is
that in contrast to some other decision theory methods, they al-
low trade-offs between criteria. Those trade-offs are desirable
in order to express, e.g., that one is willing to invest a certain
amount of QoS in order to gain improved security properties.
This characteristic of the MAUT however, requires us to filter
out alternatives which do not fulfill necessary requirements.
If a user demands at least partial forward secrecy, then any
alternative offering no forward secrecy at all is to be dropped
from further processing. Otherwise, due to the compensatory
effects of MAUT, it could get a higher rating than any other
policy-conforming alternatives, e.g., because it offers excellent
QoS properties.

The determination of weights should be done carefully, as
these—besides the parametrization of the value functions—are
an important factor in calibrating the MAUT. One possibility
is to just estimate the weights. A more analytic approach to
determine the weights is described in the Analytic Hierarchy
Process. In the AHP, criteria of the same hierarchy layer with
the same parent, are compared pairwise on a simple discrete
scale and the resulting values are entered in a quadratic
matrix. The eigenvector method, used to calculate the weights
based on the obtained matrix, enables analytical detection of
inconsistencies in a user’s preferences. For this reason, in
decision theory this method is often preferred over simpler
methods to determine weights.

When configuring the system for a group of users, a sensitiv-
ity analysis for the chosen parameters, i.e. the parametrization
of functions and the determined weights, should be performed

on a some predefined sets of alternatives, realistic in the given
scenario, to verify the intended behavior.

The result of the aggregation is a utility value for each
candidate, which can be used to order the candidates and
choose the best candidate—the one with the highest utility.

VII. RELATED WORK

[12] modeled Security as a QoS parameter. The strength
of cryptographic algorithms, the key length, and a few other
parameters are examined; however, the authors do not compare
and choose different protocols or mechanisms.

Also looking at security parameters is [13]. The authors
point out that “security requirements are volatile and change
frequently”. The major difference is that our approach does
not rely on a specific protocol to jointly negotiate the use of
a security protocol but automatically uses existing protocols
without an additional negotiation. Our solution also supports
requirements besides security.

The authors of [14] looked into the tradeoff of energy
consumption and security for small wireless devices. Their
approach is based in a simple classification of packets. Packets
may require high, medium, or low security. Also management,
control, and data packets are treated differently. The security is
just represented by the years the encryption should be secure
and a probability that the message authentication is broken.
This is calculated by a formula using todays estimations.
Basically, the user can only choose between a few different
ciphers and key lengths. We provide a more flexible approach
and allow ways to integrate known attacks into the security
estimation, allow for different connections to have different
requirements, and are able to take multiple criteria into con-
sideration.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented our policy-controlled, au-
tomated approach for determining the security protocol which
best complies with a user’s intentions. We do not only support
different security protocols and cipher suites but also presented
how to examine the supported cryptographic algorithms. A
major advantage of our rating approach is the modeling and
inclusion of QoS and energy consumption aspects in the rating
of individual security protocols and cipher suites.

The next possible step is adding further aspects, like Mo-
bility and Robustness. To do this, the exact influence of the
security protocols has to be examined and modeled. But also

additional criteria of the existing aspects can be added and
evaluated, e.g., data volume and key lifetime.

In addition, further evaluation work on the effects of the w-
parameters, possibly with different users, may yield additional
insights into the approach.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Christoph Sorge for
valuable input and discussions.

REFERENCES

[1] A. Whitten and J. Tygar, “Why Johnny can’t encrypt: A usability
evaluation of PGP 5.0, 8th USENIX Security Symposium, 1999.

[2] P. Gutmann and 1. Grigg, “Security usability”, IEEE Security and
Privacy, vol. 3, no. 4, pp. 56-58, 2005.

[3] L. Volker, M. Scholler, and M. Zitterbart, “Introducing QoS mechanisms
into the IPsec packet processing”, in Proc. 32nd IEEE Conference on
Local Computer Networks LCN 2007, 15-18 Oct. 2007, pp. 360-367.

[4] T. Saaty, Fundamentals of the Analytic Hierarchy Process. ~ RWS
Publications, 4922 Ellsworth Avenue, Pittsburgh, PA 15413, 2000.

[5] C. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods
and Applications. Berlin, Heidelberg, New York: Springer Verlag, 1981.

[6] J. Figueira, V. Mousseau, and B. Roy, “ELECTRE methods”, in
Multiple Criteria Decision Analysis: State of the Art Surveys,
J. Figueira, S. Greco, and M. Ehrgott, Eds. Boston, Dordrecht,
London: Springer Verlag, 2005, pp. 133-162.

[7]1 R. Keeney and H. Raiffa, Decisions with multiple objectives: Preferences
and value tradeoffs. J. Wiley, New York, 1976.

[8] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management”, National Institute of Standards and Technology
(NIST), NIST Special Publication 800-57, revised, Mar 2007, see http:
/[csre.nist.gov/publications/nistpubs/index.html.

[9]1 A. D. Keromytis, J. L. Wright, T. D. Raadt, and M. Burnside, “Cryp-

tography as an operating system service: A case study”’, ACM Trans.

Comput. Syst., vol. 24, no. 1, pp. 1-38, 2006.

P. Keeratiwintakorn and P. Krishnamurthy, “Energy efficient security

services for limited wireless devices”, Wireless Pervasive Computing,

2006 1st International Symposium on, pp. 1-6, 16-18 Jan. 2006.

A. Weissel and F. Bellosa, “Process cruise control: event-driven clock

scaling for dynamic power management”, in CASES '02: Proceedings

of the 2002 international conference on Compilers, architecture, and

synthesis for embedded systems. New York, NY, USA: ACM, 2002,

pp. 238-246.

C. Irvine and T. Levin, “Quality of Security Service”, in NSPW ’00:

Proceedings of the 2000 workshop on New security paradigms. New

York, NY, USA: ACM, 2000, pp. 91-99.

A. Klenk, M. Masekowsky, H. Niedermayer, and G. Carle, “ESAF — an

Extensible Security Adaptation Framework”, in Proceedings of the 10th

Nordic Workshop on Secure IT-systems (NordSec05), Tartu Estonia, Oct.

2005.

P. Keeratiwintakorn and P. Krishnamurthy, “Energy efficient security ser-

vices for limited wireless devices”, in Proc. 1st International Symposium

on Wireless Pervasive Computing, 16—18 Jan. 2006, pp. 1-6.

S. Kent and K. Seo, “Security Architecture for the Internet Protocol”,

RFC 4301 (Proposed Standard), Dec. 2005.

T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)

Protocol Version 1.17, RFC 4346 (Proposed Standard), Apr. 2006,

updated by RFCs 4366, 4680, 4681.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

