Distack

Towards Understanding the Global Behavior of DDoS Attacks – A Framework for Distributed Attack Detection and Beyond -

Thomas Gamer, Christoph P. Mayer, Martina Zitterbart 29. Aug 2008, EURECOM, France

TELEMATICS Institute of Telematics, University of Karlsruhe (TH) Karlsruhe Institute of Technology (KIT)

Why can't we cope with DDoS?

- Some exemplary issues
 - Little knowledge about global behavior of DDoS
 - Attacks highly distributed. Attack detection and countermeasures mostly not!
 - Few *directly* reusable results

Initial challenge:

Complex development and evaluation of mechanisms for local and *distributed* attack detection and traffic analysis

→ Initial development effort as base for your mechanisms is incredibly high!

What you can do with Distack

- Attack detection and traffic analysis
 - Rapidly implement and run your attack detection and traffic analysis schemes
 - Lots of reusable modules (e.g. sampling, plotting)
 - Run on live traffic or captured traces
 - Comfortable communication between remote instances → easier distributed detection

Simulations

- Run your modules transparently in large-scale simulations
- Integrates seamlessly with the toolkit OMNeT++/INET/ReaSE

and that`s not even all ...

Distack: Distributed attack detection

Framework for distributed attack detection and traffic analysis

What it gives to you

- Fully concentrate on your methods for attack detection and traffic analysis
- Write once run everywhere: Transparently run your methods, e.g. on a PC or in a simulation environment
- High reuse through building blocks
- Great support for your attack detection

T. Gamer, C. Mayer, M. Zitterbart

Distributed Attack Detection

Institute of Telematics University of Karlsruhe

www.tm.uka.de 🔲

Rough Architectural Overview

Module manager

FELEMATICS

- Mechanisms are implemented in small building blocks → modules
- The environment to implement your modules

• Network manager

- Abstraction from the network
- Handles the different ways packets come in

• Local and remote messaging

- Communication for the lightweight modules
- Data-centric communication, local and remote

Configuration

• Flexible way to configure your modules and Distack

Lightweight Modules

- Modules: implement well-defined functionality
 - Small building blocks for high reuse
 - Loaded at runtime on demand

- Easily configurable (next slide)
- Perform packet inspection ... or other tasks
- \rightarrow this is where you implement your mechanisms!
- Channels: linear linked modules
 - Create more complex functionality

Channel A	Sampling Monitoring Plotting	
Channel B	Protocol filter Statistics	
T. Gamer, <u>C. Mayer</u> , M. Zitterbart	Distributed Attack Detection	

- Modules are leightweight, small, decoupled
 → Enables high reuse, but how can they interact?
- Data-centric communication between modules
 - Modules register for message they are interested in
 - Modules send out messages
 - Messages delivered to registered modules
 - Module: `Hmm ... interesting information I got here ... maybe someone is interested in this` → send
- Remote communication as easy as local
 - Send messages locally, remotely, or both
 - Transparent message distribution to remote Distack instances

MessageSynAckBalance msg(291,33);

sendMessage(msg,REMOTE_DESTINATIONS_NEIGHBOURS);

Transparent Abstraction

- Distrack abstracts from traffic sources
 - Live traffic: buffers handle bursty traffic
 - Traffic traces: replayed with original timing
 - Simulated traffic: packet transformation for OMNeT++
- Easy and consistent packet access
 - Traffic live, replayed, or simulated ... you don't care!
 - Easy and safe access to protocol parsers

```
TcpPacket* tcp = ippacket->getNextPacket();
if(tcp->isFlagSet(TcpPacket::TCP_FLAG_SYN))
        port = tcp->getDestport();
```

- Supported protocols
 - Ethernet, ARP, ICMP, IPv4, IPv6, MPLS, TCP, UDP
 - More to come. Easy to implement your own!

Integration into simulations

- Few simulations of DDoS attacks and detection
 In our opinion the key to understand the global and distributed behavior of DDoS attacks
- Our simulation toolkit
 - OMNeT++: time discrete simulation environment
 - INET Framework: lots of protocols (TCP, UDP, ...)
 - ReaSE: topology, self-similar traffic generation, DDoS zombies
- Distack is integrated into this toolkit
 - Packet formats
 - Transparent transformation into Distacks protocol parsers
 - Time domain
 - The simulation time runs different!
 - Modules source code compatible
 - ▶ just need to recompile ...

Distack is real!

Everything presented here is running code!

- Go and implement some modules
 - Try it out! E.g. analyze a trace file
 - Use the communication between remote instances
 - There are already several modules available
- Go and do a large-scale simulation
 - Could be DDoS, could be somethings else
 - Find out how easy Distack makes your life!
 - Integrates with ReaSE \rightarrow coming soon in this talk

FLEMATICS

What we are doing with Distack

TELEMATICS

Realistic Simulations

• We want ...

FI EMATICS

- to understand the global behavior of DDoS attacks
- evaluate our mechanisms implemented in Distack
 → on a large-scale!
- Using real systems is *extremly* costly!
 - Where to get e.g. 10.000 machines from?
 - Use a real network? We will execute DDoS attacks!

→ Simulations

- Topologies that match todays Internet infrastructure
- Realistic background traffic, malicious DDoS traffic

- How does todays Internet topology look like?
 - Power-law distribution in node degree
 - Lots of nodes with low node degree
 - Few nodes with high node degree
 - Hierarchical structure

- Autonomous Systems (stub/transit) with routers
- Based on Zhoua et al. ICCCAS06, Li et al. SIGCOMM04

- Legitimate traffic as well as...
 - Self-similar behavior
 - Heavy-tailed ON/OFF intervals as well as packet sizes
 - Reasonable mix of different kinds of traffic
 - → Traffic profiles define flow behavior
- ... malicious traffic
 - Evaluate the attack detection system
 - Used real-world tools and ported their behavior
 - DDoS attacks: Tribe Flood Network
 - Worm propagations: Code Red v1

ReaSE Summary

- ReaSE combines topology and traffic generation for realistic simulation environments
 - Based on up-to-date solutions
 - Includes generation of malicious traffic
 - Integrates with OMNeT++ and INET Framework
- GUI helps to ...
 - create topologies
 - define traffic profil

	Topology Traffic F Traffic Profile File	Coprofiles	Replace Node Types		
es	Luau Save Profiles Backup Traffic Interactive Traffic Web Traffic Web Traffic Nameserver Streaming UDP Misc Ping Interactive	ID <u>3</u> Reply Length Reply per Request Selection Probability WAN Probability	1.000 [±] / ₂ Reques 30 [±] / ₂ Reques 11,52 [±] / ₂ Time be 73 [±] / ₂ Time to	Web Traffic t Length ts per Flow etween Requests respond etween Flows	200 - 10 - 2 - 0,5 - 3 -
		Port Hoplimit			
\times	$\langle \rangle$	+	TH		HHII
Attack [Detection		Institute of Tel	lematics	www.tm.uka.de

TELEMATICS

institute of refematics University of Karlsruhe

PktAnon – Traffic Anonymization

- How it all began: We wanted to record network traffic at an ISP gateway to evaluate the attack detection mechanisms ...
- → Anonymization of network traffic
 - Sharing recorded traffic traces with third parties
 - Legal reasons, protect users, protect your network infrastructure, ...
- Existing tools not flexible enough
 - Have been built out of a specific need
 - → PktAnon is generic and fully flexible!

Anonymization profiles

- Anonymization profiles
 - Allow complete flexibility in the anonymization
 - \rightarrow every protocol field can be anonymized!

<TcpPacket>

<TcpSourceport anon=AnonHashSha1/> <TcpSegnum anon=AnonIdentity/>

- Even more flexibility
 - Input and Output piping (\rightarrow live anonymization!)
 - Output traces well-formed (checksum, length field)
 - Many anonymization primitives and protocols
- Current and outlook
 - FreeBSD package, liveHEX security CD, OpenPacket.org
 - Call to the community for defining standardized anonymization profiles with different security levels

Summary and Conslusion

- → Road towards distributed attack detection and understanding the global behavior of DDoS is stony!
- We have developed tools to flatten this way
 - Did not build them the way we needed them
 → built them generic and flexible

Framework

 Now they simplify our daily work ...and they can simplify your work!

Realistic Simulation Environment

PktAnon Profile-based Packet Anonymization

T. Gamer, C. Mayer, M. Zitterbart

TELEMATICS

Distributed Attack Detection

www.tm.uka.de 🔲

