An Architecture for Concurrent Future Networks

Future Internet 2008
Karlsruhe, 11.11.2008

Lars Völker, Denis Martin, Ibtissam El Khayat,
Christoph Werle, Martina Zitterbart
(Universität Karlsruhe (TH) / Ericsson GmbH)

Motivation

- 4WARD-Project: „Let 1000 networks bloom“
 - Network Virtualization
 - Vast amount of (virtual) networks
 - User might have multiple Networks side-by-side

- How can we do this?
 - How can we run multiple networks?
 - What must a node look like?
 - How do we connect an application to the correct network?
 - What about Security, QoS, and Mobility?
 - Rapid creation of such networks?
Definitions

❖ Just to make life easier for us …

❖ **Network Architecture** – A common understanding within a network. Usually involves common protocols as well as naming and addressing.

❖ **Network Architect** – Designer of networks and/or network architectures.

Structure of this talk

❖ Motivation

❖ Definitions

❖ Node Architecture at a glance

❖ Important Concepts of the Node Architecture

❖ Node Architecture put together

❖ Rapid creation with the Design Process

❖ Conclusion and Outlook
Node Architecture at a glance

- Simplified version
- Netlet as Protocol Container
- Architecture-specific Multiplexer
- Network Access
 - Virtual or physical Networks
 - Network Access Manager

The Netlet – A container for Future Internet protocols

- Netlet (≈ Protocol Stack)
 - Is usually based on one Network Architecture
 - Fits usually just one Network Architecture
 - NAI has to be compatible to Network Architecture
 - Could be build many different ways:
 - Writing Code, Code Generation, 3rd party, Composition, …
 - “Interop Netlet” connects multiple Network Architectures
Application Interface –
Moving forward from the Socket API

- Today’s interfaces to the applications (e.g. Socket API) have drawbacks
 - Peer is described by address and not by name
 - Usually simple name resolution rule (e.g. IPv6 first, IPv4 second)
 - With 1000 networks, choice of the network important!
 - Applications might have requirements on communication!
 - Please protect this connection

- Needed changes:
 - Move name resolver from application to system
 - Allow application to influence choice of network with requirements

Network Access Interface –
Transparently support Network Virtualization

- With 1000 networks, many of them will be virtual networks!
 - That means: Virtual Networks won’t be special
 - Possibly the common case

- The Network Access Interface
 - Hides the differences of physical and virtual networks
 - Supports the description of the underlying network
 - e.g., latency, energy consumption, cost
 - Triggers of network events
 - So the selection of Netlets could also be based on the network properties
Automatic Selection – Choosing the best Netlet

- With “1000 networks” the user cannot just manually choose the network!

- Idea:
 - Let application, user, and administrator describe requirements/goals
 - Description of underlying network
 - “Estimate” the Netlet’s behavior
 - Rank the Netlets based on this

- This is based on Multi Attribute Utility Theory (MAUT) and [1]

Criteria

- To determine what’s best we need to describe Netlets!
- We looked at several criteria, here some examples
Calculating total value

How to aggregate the criteria to overall utility:

\[v(a_i) = \sum_{j=1}^{m} w_j \cdot v_j(c_j(a_i)) \]

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative (i)</td>
<td>(a_i)</td>
</tr>
<tr>
<td>Criterion (j)</td>
<td>(c_j)</td>
</tr>
<tr>
<td>Weight for criterion (j)</td>
<td>(w_j)</td>
</tr>
<tr>
<td>Attribute value of (a_i) with regard to criterion (c_j)</td>
<td>(c_j(a_i))</td>
</tr>
<tr>
<td>Value function for criterion (c_j)</td>
<td>(v_j)</td>
</tr>
<tr>
<td>Total value of alternative (a_i)</td>
<td>(v(a_i))</td>
</tr>
</tbody>
</table>

Value Functions

- Function to “translate” the individual criteria’s values to a (generic) utility
- This function has to fit to the criterion
 - Each criterion could have a specific value function
 - It should be adaptable

[Graph: A possible Value Function for Latency]
Determine Effective Bit Strength (EBS) of involved cryptographic primitives:
- Authentication, Key Exchange, Encryption, Message Authentication
- Aggregate those EBS values using the Min-Function
- EBS → Utility Value
 - Value is not linear for most users

Influencing the Decision Process

- Value functions
 - Can be replaced and/or adjusted
- Weights
 - Put criteria into proportion
- Requirements
 - Describe which values are ok for criterion
 - Works also for qualitative criteria
Design Process –
Accelerating the Creation of Netlets

- Iterative process aiding the future network architect to design new networks
- The network architect will start with his own requirements and will refine them during the process
- He will derive a Blue Print for the network architecture’s components and functionalities
- With this Blue Print
 - Components of the network architecture can be implemented (if not using standard components already existing on the market)
 - Network topologies can be designed by network administrators
Conclusion / Benefits

- Create a new network architecture if needed
 - Every virtual network can have their own
 - You could even have applications come with their own
 - Has to be a simple process!
 • The Design Process enables this

- Netlets can be treated as almost arbitrary black boxes
 - Approaches like RNA and SILO can run in a Netlet
 - We try to not introduce too many invariants
 • Allow for future development

- Choosing the Netlet and Network Architecture dynamically
Thank you for your attention

The Project Website: http://www.4ward-project.eu/