
An Architecture for
Concurrent Future Networks

Lars Völker∗, Denis Martin∗, Ibtissam El Khayat†, Christoph Werle∗, Martina Zitterbart∗
∗Institut für Telematik, Universität Karlsruhe (TH), Germany †Ericsson GmbH, Germany

I. INTRODUCTION

One of the key interests in Future Internet research is
network virtualization [1]. It allows to operate multiple net-
works in parallel, each possibly having different applications,
requirements, protocols, and even users. For the 4WARD
Project1 network virtualization is one of the core concepts to
let 1000 networks bloom.

With such highly specialized virtual networks, users do not
just use a single network but will use several virtual networks
in parallel. A user could, for example, have one virtual network
optimized for voice communication with family members,
while another virtualized network is used for communicating
sensitive information with business partners. A third general
purpose network, like today’s Internet, could be used for
exchanging electronic mail. These networks could be even of
different Network Architectures, e. g. using different protocols,
and different addressing schemes.

To benefit from the possibilities of such specialized virtual
networks, it is important to throughly consider the architecture
of the end-node participating at a multitude of networks. We
call this architecture a Node Architecture.

In addition, a good design process is needed to allow
for rapid creation of protocols for new networks. It is very
likely that different approaches, like composing or generating
communications protocols, will accelerate the implementation
and deployment in some cases significantly, while in other
cases other approaches, like third party software, might give
better results. Therefore, it is essential to support different
approaches of constructing communication protocols, so that
the network architect or user can choose the best approach for
the virtual network and application at hand.

We define the following goals for our concepts:
• Support multiple virtual networks with possibly different

architectures in parallel
• Support different approaches for creating protocols
• Support novel communication paradigms, like Network

of Information [2]
• Allow new naming and addressing schemes
• Be efficient, flexible, and extensible
• Leave room for business cases and services
This paper is structured as follows: Section II will present

our Node Architecture including the main concepts to achieve
the aforementioned goals. After that, Section III will sketch

1The FP7 4WARD Project – http://www.4ward-project.eu

the design process needed to accelerate the development and
implementation of new networks and network protocols. We
will close this paper with Related Work, Conclusion and
Future Work.

II. THE NODE ARCHITECTURE

The Node Architecture we propose does not require any
specific protocols to operate. It can be seen as a framework or
platform for a multitude of future protocols and applications
that are able to run side-by-side. Changing such a Future
Internet protocol stack will not require the application or the
network interface to be adapted. Therefore, exchanging one
set of protocols with another is possible without modifying
any application software or hardware in the future. This
way, applications may communicate via a multitude, possibly
virtualized networks without requiring them to know about the
underlying network architecture.

To achieve this goal, some changes have to be made to
today’s concepts. Our proposal for a new Node Architecture
is depicted in Figure 1 and described in the following sub-
sections.

NA NA NA

Logical View of Node

Application

NA Manager

N
et

le
tC

re
at

or

Application
requirements

User policies for
network selection

M
an

ag
em

en
tTuning /

Optimization
Agent

Opt
Cache

Netlet
Selection

Name &
Addr

Mapper

Decision
Engine

N
et

le
t

Multiplexer

Network Accesses

UP

UP

AR

AR

N
et

le
t

N
et

le
t

N
et

le
t

Figure 1. Node Architecture

A. The Netlet – a container for Future Internet protocols

Encapsulation by Netlets is the fundamental concept in our
Node Architecture to allow the Future Internet to smoothly
evolve with multiple, parallel networks. A Netlet can be com-
pared with today’s network protocol stacks and encapsulates
the protocols of the Future Internet. Naively said, a Netlet



provides simple send/receive interfaces at its top and bottom.
In practice, of course, they offer additional operations for
configuration and attachment to the Netlet Selector at the top
(see Section II-D) and the multiplexer at the bottom. Netlets
will be dynamically instantiated by the Netlet Creator.

The Netlet itself may be of an arbitrary nature – it could
be compiled from lightweight, handwritten code or could
be generated using a complex, formal definition taking best
practices in Software Engineering into account. There are
also countless other possible ways. While we do not require
a specific design for a Netlet, we are currently aiming to
provide design methods for a structured, verifiable protocol
composition for various future network applications. Besides
that, it is also possible to implement existing approaches, like
e. g. RNA [3] and SILO [4] as Netlets.

Netlets of the same network architecture have a common
basic understanding of the communication protocols, i. e. they
understand the same basic PDU format. This is necessary,
for instance, because there could be the need of a common
identifier to allow multiplexing between the communication
streams of different Netlets of the same architecture. To
avoid such invariants common to all architectures, we allow
for architecture specific multiplexers, denoted in Figure 1
through different shapes of Netlet bottom connectors. These
multiplexers have to be installed on the system where a specific
architecture should run.

Netlets may have configuration parameters that modify their
behavior slightly. This could be, for instance, the maximum
data unit size they are allowed to use or the encryption strength
to be used by Netlets supporting encryption. These parameters
may be needed to be adapted if, for instance, the properties
of the underlying network change (e. g. because of a hand-
over from a wired to a wireless connection type). For this
case, a Tuning and Optimization Agent constantly monitors
the conditions of the Netlets, the network, and the applications
and tunes configuration parameters to adapt the Netlet as good
as possible to the new conditions.

B. Application Interface – Moving forward from the socket
API

Today’s applications commonly use the socket API abstrac-
tion (or a similar interface) to communicate. This abstraction,
however, has a major problem: the application needs to know
the address of the peer in the address format used inside a
given virtual network. Since applications often only know a
(human readable) name of their communication peers, name
resolution has to take place. This name resolution is commonly
achieved by the application using a resolver library. Examining
IPv4/IPv6 stacks these days, an obvious problem may be
identified. The resolver might return two different addresses
for one well-known name: one IPv4 and one IPv6 address. The
application now uses a heuristic: try IPv6 first and fall back
to IPv4 after a timeout – commonly a few seconds2. Such a

2“IPv4 first, IPv6 second” would be also conform to [5], but this would
not support a active transition towards IPv6.

simple heuristic however has its limitations. It means that the
selection of two possible different paths through the Internet
will be just based on “IPv6 first, IPv4 second”. One could
imagine the case that the path using IPv6 has a unacceptable
high latency, while the IPv4 path would be still acceptable. In
such a case a better approach for selection would be preferable.

For these and other reasons (e. g. support of novel naming
schemes), our Node Architecture moves the name resolution to
the system as Name & Address Mapper (compare to Figure 1)
and lets the application work with names only.

C. Network Access Interface – Transparently supporting Net-
work Virtualization

Our interface to access any underlying network infrastruc-
ture is called Network Access (NA). Unlike today’s network
interfaces, it was designed as a clean interface whose level of
abstraction and functionality is not fixed but extensible to the
needs of any future network architecture. NAs may provide
properties of the network they are connected to, which are
used for Netlet selection, tuning, and optimization.

Our goal is to allow running multiple different network
architectures side-by-side. If network virtualization is used,
new Virtual Network Accesses (VNA) are created to access the
(virtual) infrastructures of the virtual networks. This way, the
generic interface of the NA can hide the presence of network
virtualization from the Netlets and from the Node Architecture
in general. The VNA may be completely transparent to the
Node Architecture.

Network Accesses are registered at a Network Access Man-
ager. The Network Access Manager has the task to associate
the Network Accesses to architecture specific multiplexers.
This guarantees that Netlets accessing a network speak the
same language as the network itself, e. g. in terms of PDU
formats.

D. Automatic Selection – Choosing the best Netlet

A system running multiple Netlets side-by-side is not neces-
sarily user friendly, since the user has to always choose a Net-
let for a given communication association. Our Node Archi-
tecture therefore implements an automated selection approach
inside the Decision Engine, based on [6]. This automatic
selection takes many different properties into account. The
properties (e.g. latency, throughput, effective bit strength) are
grouped into different categories, e. g. Security, QoS, Energy
Consumption, and Mobility.

Using these properties, applications can state their require-
ments for the network (application requirements in Figure 1).
Also user or administrator policies can be defined this way.
All of them can define which properties are important, so that
the selection approach can take this into account.

Based on these policies the selection approach will now cal-
culate the utility of the available Netlets using Multi Attribute
Utility Theory (MAUT). It therefore converts every property
(e. g. latency) to a property independent utility by using a
utility function. The utility function defines how much utility
a certain value of the property has, e. g. low latency might be



valuable for a VoIP call; thus having high utility. It should
be clear that every property needs a specific value function to
convert its values to the utility. In the next step the combined
utility of a Netlet is calculated from the utilities of the different
properties and the policies.

The selection algorithm itself, however, does not support
composed Netlets directly. To support Netlets, which are
composed of different functional blocks, we use an aggre-
gation algorithm, which calculates the overall properties of a
composed Netlet by the properties of the functional blocks it
is composed of.

The current implementation of the selection algorithm is
fast enough to make decisions for more than 1000 connection
attempts per second, using a moderate number of alternatives.
It is however subject to further investigation, whether the
aggregation algorithm can work for different composition
approaches.

III. DESIGN PROCESS

Providing a platform for running multiple network architec-
tures in parallel does not automatically guarantee success for
running a multitude of virtual networks. It is also necessary to
ease the development of network architectures and protocols.
The complexity of protocol design may lead to common
errors that are repeated over and over again. To avoid these
errors and to allow for rapid architecture prototyping, we are
developing a structured design process. This process lends
from Software Engineering methodologies (MDA [7]) and
provides general guidelines for network architectures. Such
structured methodologies have been proven indispensable in
software development, and we now aim at developing similar
techniques for network development. Additionally, a catalog
of standard functionalities (e. g. for routing, naming and ad-
dressing, transport, mobility, QoS, and security) is provided.
Together with the design guidelines, a network architect may
choose among alternatives and opt for the ones that fit his
requirements.

The design process is currently split into three phases: (1)
the identification of requirements, (2) the definition of the Net-
work Architecture Model (NAM), and (3) a deduced Software
Architecture Model (SAM). From the Software Architecture
Model, an implementation of the network architecture is finally
created. The phases are not self-contained but will provide
feedback to the other phases as depicted in Figure 2. Therefore,
as in Software Engineering, the whole design process is an
iterative process that will refine all intermediate models until
the end-state is satisfactory.

During the first phase, the requirement specification for a
new network architecture is developed. In the common case,
there is a business idea or service request at the beginning
that is highly incomplete and most likely from a non-expert. A
domain expert, i. e. a network architect, identifies in this phase
the detailed technical requirements imposed on the network
architecture that are needed to realize the service or idea. This
phase is very similar to the requirement specifications that are
best practice in Software Engineering.

Requirements

Network
Architecture

Model

Software
Architecture

Model

Implementation

Main Modelling Path

Feedback
2 3

1

1 2 3 Design Process Phases

Figure 2. Design Process

In the second phase, the network architect walks through
different abstraction levels or views. First, he defines the basic
network elements (e. g. node types, link types, etc.), what basic
functionalities they have, and how they are interconnected.
From this fairly abstract view, he looks closer at the nodes
and identifies which parts of the aforementioned functionalities
are run on the respective nodes as protocols. Groupings of
these protocol functionalities build Netlets that are specific to
the new network architecture. Getting even more into detail,
the construction of the Netlets themselves is defined: here, an
off-line composition approach may be considered, or standard
Netlets supplied by third parties may be used as black boxes.

The third phase of the design process focuses on the soft-
ware architectural aspect of the Node Architecture. With the
specification taken from phase two, actual interface definitions
are created for the elements within the Node Architecture,
the Netlets, and the functional blocks within the Netlets. For
this, the Network Architecture Model can be transformed
into a Software Architecture Model using model-to-model
transformation. During this transformation, missing details are
added as required for the software platform.

As a possible final step, code or stub code may be gen-
erated with the help of the Software Architecture Model via
model-to-code transformation. Since this is mainly Software
Engineering research, we do not focus on this part, but we
pave the way for any solutions in this domain.

IV. RELATED WORK

While there is a lot of research regarding network virtu-
alization and new communication protocols, most of them
only focus on small problem spaces and look there into the
details – we instead are looking for a framework around all
those approaches.

The driving forces behind composable protocol stacks are
mostly described as follows: (1) overcome strict layering and
allow for clean cross-layer interaction, (2) avoid recurring
functionality at several layers, (3) allow reuse of smaller
functional units in several protocols, and (4) simplify the
design of protocols.

While composition approaches in the past were mostly
looking at dynamic composition at run-time with all its com-
plexity (e. g. F-CSS [8]), recent research shifted towards more
structured approaches where the solution space is restrained
and part of the decision process is done off-line, either at



design-time or at network configuration time (e. g. RNA [3],
SILO [4]). Another approach (RBA [9]) proposes a unified
protocol header allowing that stored information can be used
by several units of functionality, regardless on their order of
operation or the layer they appear in.

Virtualization techniques allow to run several isolated net-
works in parallel over a single physical substrate [1], [10],
[11]. The architectures of these networks do not matter as long
as they are able to interface with the virtualization infrastruc-
ture. The focus of the different virtualization techniques lies
more on the signaling for reservation of virtual resources.

Although, virtualization offers great opportunities to run
novel architectures in parallel without big investment in infras-
tructure, it may not be needed in all cases. For instance, if there
is no real need for strict isolation of network architectures,
the aforementioned composition approaches could share the
same (physical or virtual) channel – provided that there is some
generic Node Architecture around them as presented in this
paper.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented our Node Architecture for
the Future Internet. It allows for arbitrary, parallel network
architectures on a single node and the smooth transition
towards the Future Internet as well as the evolution beyond.
For the evolution beyond, we are working on a design process
that allows for fast development of a multitude of future
network architectures. Here, we are investigating possible tool
support for the concepts and patterns we develop. Future work
also includes the further refinement and evaluation of our
concepts.

ACKNOWLEDGMENT

Parts of this research were carried out within the 4WARD
project of the 7th framework programme (FP7) and are par-

tially funded by the European Commission. We would like
to thank all the partners involved in valuable discussions and
contributions about the concepts presented here. In addition,
the authors would especially like to thank Sören Finster for
valuable input during writing this paper.

REFERENCES

[1] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your
spare time”, SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp.
61–64, 2007.

[2] V. Jacobson, M. Mosko, D. Smetters, and J. J. Garcia-Luna-Aceves,
“Content-centric networking”, Whitepaper, 2007.

[3] J. D. Touch, Y.-S. Wang, and V. Pingali, “A Recursive Network
Architecture”, ISI, Tech. Rep., Oct 2006, iSI-TR-2006-626.

[4] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
SILO Architecture for Services Integration, controL, and Optimization
for the Future Internet”, in Proc. IEEE International Conference on
Communications ICC ’07, G. N. Rouskas, Ed., Glasgow, Scotland, 2007,
pp. 1899–1904.

[5] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers”, RFC 4213 (Proposed Standard), Oct. 2005.

[6] L. Völker, C. Werle, and M. Zitterbart, “Decision Process for Automated
Selection of Security Protocols”, in 33nd IEEE Conference on Local
Computer Networks (LCN 2008). Montreal, Canada: IEEE, Oct. 2008.

[7] T. Stahl and M. Völter, Model-Driven Software Development. John
Wiley & Sons, 2006.

[8] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-
performance communication subsystems”, IEEE Journal on Selected
Areas in Communications, vol. 11, no. 4, pp. 507–518, May 1993.

[9] R. Braden, T. Faber, and M. Handley, “From protocol stack to protocol
heap: role-based architecture”, SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 1, pp. 17–22, 2003.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas: realistic and controlled network experimentation”, in SIGCOMM
’06: Proceedings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications. Pisa, Italy:
ACM, 2006, pp. 3–14.

[11] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization”, Computer, vol. 38, no. 4, pp.
34–41, 2005.


