
A Case for Mutual Notification

A survey of P2P protocols for Massively Multiplayer Online Games

Stephan Krause
Institut für Telematik

Universität Karlsruhe (TH)
Germany

stkrause@tm.uka.de

ABSTRACT
Massively Multiplayer Online Games and Virtual Worlds are
among the most popular applications on the Internet. As
player numbers increase, the limits of the currently dom-
inant client/server architecture are becoming obvious. To
overcome those limits, the research community has devel-
oped protocols for these applications based on peer-to-peer
technologies. However, no consensus has been found yet on
how the potential of peer-to-peer can be optimally used for
these applications.

In this paper, we compare and evaluate three classes of
proposed architectures that within themselves share com-
mon design principles. One representative protocol of each
class is examined in greater detail. The performance of these
protocols is then evaluated in different scenarios in a series
of simulations. We show, that the architecture with the
best performance in message delay is the one relying on mu-
tual notification for detecting new neighbors and on direct
connections to all neighbors for exchanging event messages.
Furthermore, this architecture is still competitive regarding
the required bandwidth.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems

General Terms
P2P MMOG Protocol Survey

Keywords
MMOG, P2P, Simulation, Mutual Notification

1. INTRODUCTION
In recent years, Massively Multiplayer Online Games (short:

MMOGs) have become a popular genre among computer
gamers. Additionally, virtual worlds like Second Life have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames’08 Worcester, MA, USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

created much interest in mainstream media. Traditionally,
MMOGs and Virtual Worlds rely on central servers or server
farms to disseminate game events among players. As player
numbers increase, however, these approaches reach their lim-
its. Not only is maintaining a huge server infrastructure a
significant cost factor in providing a MMOG, the capacity
of the server also limits the number of concurrent players
in a game. Most MMOG developers resort to techniques
known as instancing. Instead of providing one shared world
for all players, they provide several copies of the game world,
each with only a fraction of the players. Players in different
instances of the game world can usually not interact.

P2P technologies have emerged as a possible way to solve
the scalability problem of client/server based architectures.
There is a growing interest in P2P protocols for MMOGs and
Virtual Worlds in the research community. Several different
architectures have been proposed. However, there is no con-
sensus yet on which of these architectures will perform best,
especially because the many different possible scenarios may
favor different protocols.

In this paper, we present a survey and a simulation based
evaluation of possible protocol architectures for P2P based
MMOGs. In section 2, we introduce three different P2P pro-
tocols belonging to three different architectural categories.
In section 3, we give an overview of the simulation environ-
ment, and we present the simulation results in section 4.
Section 5 concludes the paper.

2. OVERVIEW OF P2P PROTOCOLS FOR
MMOG

Over the last few years several P2P protocols for MMOGs
and Virtual Worlds have been developed in active research.
As simulating all proposed protocols is not feasible, we cat-
egorized the P2P protocols and selected one representative
protocol from each category. The following subsections will
introduce these categories: ALM based protocols, supernode
based protocols and mutual notification based protocols.

2.1 ALM Based Protocols
Application Layer Multicast (short: ALM) based proto-

cols [10][17] disseminate game events and messages using
standard ALM techniques. In most cases, the game space is
divided into a number of subspaces. Each of these subspaces
is represented by a dedicated multicast group. If an event
takes place inside one subspace, the corresponding message
is sent via the subspace’s multicast group to all players that
are interested in events in this subspace.

A player is usually only interested in events that happen

inside his visual range. This range is called Area of Inter-
est, or AOI. In many cases, the AOI is fully inside a single
subspace. If a player’s AOI intersects the border to another
subspace, however, he also has to subscribe to the other
subspace’s multicast group. To avoid a flood of subscription
and unsubscription messages if a player moves close to the
border between subspaces, usually an unsubscription range
slightly larger than the AOI is defined. A player only unsub-
scribes from a subspace if the subspace is not only outside
his AOI but also outside of his unsubscription range.

SimMUD [10] is a typical example for an ALM based pro-
tocol. In SimMUD, the game space is divided into fixed
regions with unique IDs. The ID of the subspace is hashed
by a collision resistant hash function like SHA-1. The result-
ing value serves as the group ID of the associated multicast
group. If additional state is required for the region (e.g., the
location of non-player objects such as chests), this informa-
tion is stored at the root of the multicast tree.

SimMUD relies on Scribe [3] for dissemination of the mul-
ticast messages. Scribe in turn is built on top of the peer-
to-peer key based routing protocol Pastry [15]. In Pastry,
each node has an unique ID. Nodes can send messages to
arbitrary keys; these will be delivered to the node with the
numerically closest ID. As it is infeasible for a node to know
all other participants of the network, each node has a rout-
ing table limited to log(N) entries. If a message is sent to
the network, it will be recursively routed to the routing ta-
ble entry with the numerically closest ID. Pastry guarantees
that this will take at most O(log(N)) steps.

Scribe exploits this recursive routing mechanism. When a
node wants to join a multicast group, it sends a JOIN mes-
sage to the group’s ID. Each node that routes this message
becomes a forwarder for the multicast group. Thus, a for-
warding tree with a depth of O(log(N)) is created without
any additional messaging overhead.

If a node fails, this will be detected by his children in the
tree. These will rejoin the overlay network. As the new
JOIN message is routed, the damaged multicast tree will re-
pair itself. If the failing node has been root of a multicast
tree, the new root will detect this by receiving the JOIN
messages from the former children of the failed node. As the
new potential root is always the numerically second closest
node to the group ID, a multicast root can also backup addi-
tional informations for the subspace at this node in advance.
Hence, the new multicast root can take over the multicast
group seamlessly.

2.2 Supernode Based Protocols
As in ALM based protocols, in supernode based proto-

cols the gamespace is usually divided into subspaces. The
subspaces can be either of a fixed size [18] or dynamically
based on player density [7]. Each subspace is assigned to
a responsible node, or supernode. This supernode will re-
ceive all game event messages relevant for his subspace and
distribute them to all subspace members. Players have to
register at the supernodes of the subspaces of their interest.
The subspaces a node is interested in are determined anal-
ogous to ALM based protocols, i.e. the concepts AOI and
unsubscription range apply.

In case of dynamic subspace sizes, overloading of the su-
pernode is prevented by limiting the number of players per
subspace: If too many players are inside a certain subspace,
it will be divided into a number of smaller subspaces. With

fixed subspaces, other mechanisms are needed.
As an example for this class of protocols, we have chosen

the publish/subscribe based approach presented in [18] (we
will call this protocol PubSubMMOG from now on). It uses
fixed sized subspaces and a load balancing approach. If the
number of players in a subspace becomes too high, the su-
pernode will start to request so-called intermediate nodes.
These intermediate nodes will form a load balancing tree,
alleviating the supernode’s load.

For a better allocation of global resources PubSubMMOG
utilizes a central entity called lobby server. All nodes reg-
ister their capacities (bandwidth, available CPU resources,
etc.) at this lobby server. If new supernodes or intermediate
nodes are needed, the lobby server tasks the node with the
most resources available.

If the supernode fails, the message dissemination inside
the supernode’s subspace stops. To avoid a disruption of the
game for players, each supernode in PubSubMMOG has a
designated backup node. Whenever a player joins or leaves
the subspace, the game state is synchronized between su-
pernode and backup node. If the backup node detects the
failure of the supernode, it can instantly replace the old su-
pernode and resume the stalled message dissemination, thus
minimizing the impact of a supernode failure.

PubSubMMOG incorporates a timeslot mechanism to al-
low for the aggregation of messages at the supernode: The
supernode will accept messages only during the first half of
a timeslot. Then it will relay all received messages at once.
Messages coming too late will be discarded. While this ag-
gregation makes a global ordering of events easier and may
help the message dissemination, it limits the maximum la-
tency: players, whose messages need more than timeslot/2
to reach the supernode will not be able to publish their event
messages.

2.3 Mutual Notification Based Protocols
In contrast to ALM and supernode based protocols, mu-

tual notification based protocols do not divide the game-
space. Instead, all players send the game event messages
directly to all other players inside their AOI. This minimizes
the delay of event propagation. As a prerequisite for this, all
players have to be aware of all other players inside their AOI.
To learn about players recently moved into a player’s AOI,
each player has to rely on his neighbors for information.

We have chosen Vast [8] to represent the class of mu-
tual notification based protocols. In Vast, each player com-
putes a Voronoi Diagram [6] of all his known neighbors.
Nodes whose Voronoi region intersects the outer border of
the player’s AOI are called boundary neighbors, nodes whose
Voronoi region is adjacent to the player’s own Voronoi region
are called enclosing neighbors. Note: A neighbor’s position
can be outside a player’s AOI. Also, a node can be boundary
neighbor and enclosing neighbor at the same time.

Every time a player moves he notifies all his neighbors
about his movement. Every time a player receives a move-
ment notification, he updates his local Voronoi diagram. By
calculating the differences between the old and the new dia-
gram he can deduce whether one of his neighbors has to be
informed about the moving neighbors’ presence. In general,
only boundary neighbors have to send information about
their enclosing neighbors. To reduce traffic this check only
has to be done by boundary neighbors with their enclosing
neighbors.

Joining nodes can enter the overlay by greedily routing a
JOIN message to the closest player. Failed players can be
detected by the absence of movement messages.

3. SIMULATION
We evaluated the protocols introduced in section 2 by run-

ning simulations with different scenarios. For all simulations
we used OverSim [2] as the simulation environment.

3.1 Simulation parameters
The simulations were done using OverSim’s SimpleUnder-

lay. In this underlay model, nodes are placed into a two
dimensional space. Message delay is calculated using the
nodes’ access net delay and the nodes’ euclidean distance.
This allows simple, yet very realistic delay calculations for
Internet-like settings [12]. Node positions were chosen to fit
the measurements from CAIDA’s skitter project [11].

Node joins and leaves were initiated by OverSim’s Pare-
toChurn churn generator. This churn generator simulates
heavy tailed node session times, using a Pareto distribution
for calculating a node’s live and dead time [19]. Heavy tailed
session times in MMOGs are supported by several measure-
ment studies [13][4]. Our average mean session time was 100
minutes [4]. The churn generator was configured to create
on average 500 live nodes. Each simulation run lasted two
hours of simulated time.

For a realistic simulation of a MMOG we implemented a
simple gaming application. This application is aware of a
player’s position on a virtual game field, as well as the posi-
tion of all players in his vicinity; the AOI size is set to 40 me-
ters. Players move according to a random waypoint model.
As players in MMOGs tend to play together in groups, we
extended this movement model to a group based random
waypoint. Here, a configured number of players agree on a
common waypoint. To avoid players walking in a straight
line, a flocking algorithm [14] is applied to the moving play-
ers. The walking speed of all players is set to 5m/s, which
is roughly the running speed used in World of Warcraft.
As players move, the gaming application generates position
updates which are then sent to the peer-to-peer protocol
layer. In Vast and SimMUD, this is done five times a sec-
ond, which is a realistic average movement update frequency
for MMOGs [4]. Due to the limitations in PubSubMMOG’s
timeslot model, only two updates per second are sent here1.

In PubSubMMOG and SimMUD, the game map is divided
into 10 ∗ 10 subspaces.

3.2 Scenarios
The most important factor affecting the performance of a

peer-to-peer protocol is the player density. This factor can
be changed in two different ways. Given a fixed number of
players, the first way is to change the size of the game area.
Smaller areas mean a higher global node density. In proto-
cols using subspaces, this means players are more often part
of more than one subspace (thus increasing the average num-
ber of players per subspace) and have to switch subspaces
more frequently. In protocols with a direct connection be-
tween neighbors, a higher density leads to an increase of
players inside the AOI.

The other way to change the player density is employ-
ing group-based movement schemes and changing the size

1See section 2.2 for more details.

of the groups. A bigger group size means higher variance of
the player density, with areas crowded by a high number of
players and others completely empty.

Our simulations were done on a total game area of 1, 000m∗
1, 000m, 5, 000m ∗ 5, 000m and 10, 000m ∗ 10, 000m. Players
formed groups of 1, 5, 15, 25 and 40.

4. RESULTS
The most important criteria for judging the performance

of network protocols for MMOGs and Virtual Worlds are
the event message propagation delay, i.e. the time an event
message needs to reach the players, and the required band-
width. While players tolerate a small event message delay,
high latencies impair the players’ gaming experience [5]. In
P2P protocols for MMOGs, the message dissemination is
done by the players. As these usually have limited band-
width capacities, the bandwidth demands of these protocols
must not exceed a certain threshold.

In our simulation, we measured the difference between the
creation time of a movement event and the time of reception
of this event by other players, as well as the bandwidth con-
sumption. The figures show the behaviour of these values
dependent on the group size for different playground sizes.

4.1 Delay
Studies suggest that in MMOGs players will tolerate event

message propagation delays of up to 500 ms [5]. In fact, even
smaller latencies will be detected by players [16].

Figure 1 depicts the average time it takes for a move-
ment indication to reach a distant player on a playground
of 10, 000m ∗ 10, 000m.

The best performing protocol is Vast. As in all mutual no-
tification protocols, it takes a movement notification packet
only one overlay hop to reach its destination. Thus, the
movement delay is the same as the average delay between
two randomly chosen players in the overlay, which is slightly
above 150ms. Obviously, the delay is independent of the
group size.

In SimMUD, the ALM based protocol, a movement notifi-
cation needs an average of 360ms to reach the other players.
However, due to the unpredictable structure of Scribe’s mul-
ticast trees, there is a lot of variation in the delays. Because
the depth of the multicast tree is independent of the number
of players in a subspace, the delay is not affected by bigger
group sizes.

As in PubSubMMOG the supernode constructs a load bal-
ancing tree if too many nodes enter his subspace, the delays
increase with greater group size. The delays start at 430ms
for a group size of one, reaching 470ms for a group size of
40. A major fraction of this delay is not caused by message
propagation times but by PubSubMMOG’s timeslot con-
cept: Each movement message has to wait for an average
timeslot/2 until it is relayed by the supernode. This means
that without the timeslots, movement messages could reach
their destinations 250ms faster.

Figure 2 shows the results for a playground size of 5, 000m∗
5, 000m. Like in the scenario above, Vast stays at 150ms re-
gardless of the group size. SimMUD’s delay is slightly higher
than before, this time remaining at about 370ms. PubSub-
MMOG shows a slight increase in delay, as well, now ranging
from 450ms to 500ms.

Figure 3 shows the results for a playground size of 1, 000m∗
1, 000m. Vast’s delay is still not affected, neither by the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

D
el

ay
 (

s)

Group size

PubSubMMOG
SimMUD

Vast

Figure 1: Average event message propagation
delay, playgroundsize: 10, 000m ∗ 10, 000m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

D
el

ay
 (

s)

Group size

PubSubMMOG
SimMUD

Vast

Figure 2: Average event message propagation
delay, playgroundsize: 5, 000m ∗ 5, 000m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40

D
el

ay
 (

s)

Group size

PubSubMMOG
SimMUD

Vast

Figure 3: Average event message propagation delay,
playgroundsize: 1, 000m ∗ 1, 000m

smaller playground size nor the group size. In this scenario,
SimMUD’s performance is significantly worse than in the
scenarios above: the average delay is slightly below 600ms,
which is an increase of about 60%.

As in the scenario above, PubSubMMOG shows a slight
increase in the average delay: the average delay starts at
490ms for a group size of one, and reaches 520ms for a group
size of 40.

Summary: Due to its one-hop design, Vast outper-
forms all other protocols by a factor of 2 to 4 depending on
the scenario. Additionally, the performance is not affected
by local or global player density.

SimMUD suffers the highest deterioration in performance
when player density increases. While on a bigger playground
the delays are all in the well playable range, in the 1, 000m∗
1, 000m scenario the average delay, nearly 600ms, is too high
for most applications.

Global density is not a big problem for PubSubMMOG:
While delays increase with smaller playground sizes, the dif-
ference is barely noticeable. Due to the construction of the
load balancing tree, the delays increase with local player
density. However, as the depth of the tree increases logarith-
mically with the number of players in a subspace, the delay
increase stays within reasonable boundaries. The biggest
drawback of PubSubMMOG is the subspace concept, as it

adds an average of 250ms to all delays. Without this addi-
tional delay, movement indications would have reached play-
ers at an average of 200-270ms.

4.2 Bandwidth
During our simulations, bandwidth usage with all pro-

tocols in all scenarios remained within reasonable bound-
aries. However, we observed significant differences between
the evaluated protocols. Due to the limitation in PubSub-
MMOG to deliver more than two movement updates per
second2, its bandwidth usage is not directly comparable to
Vast and SimMUD. As with these protocols 2.5 times as
many event messages have to be distributed to the players,
the results from PubSubMMOG have to be multiplied by
that factor to become roughly equivalent.

Figure 4 shows the average bandwidth per node in de-
pendency of the group size in a playground of 10, 000m ∗
10, 000m. Vast uses approximately 1,1kByte/s. As in sparse
scenarios Vast connects to a higher number of neighbors out-
side a player’s AOI, increasing group size has no significant
influence on bandwidth usage.

SimMUD’s bandwidth use stays at a slightly better 900
Bytes/s, also unaffected by the group size. However, it
shows a significantly higher variance than the other two pro-
tocols: nodes which are involved in disseminating messages,
for example the root of a multicast tree, need a much higher
bandwidth than nodes which act only as leaves in these trees.
As nodes have no influence on who becomes involved in a
multicast tree, there are no means to evenly spread the load
among players.

In contrast to the other protocols, PubSubMMOG’s band-
width requirements rise with increasing group size: starting
with 300 Bytes/s, or 750 Bytes/s when compensating for
the lower amount of generated movement messages for a
group size of one, the bandwidth requirements rise up to
570 Bytes/s, or an equivalent of 1,4 kByte/s, for a group
size of 40.

This behavior can be explained by the increase of the lo-
cal density of players when increasing the group size. Bigger
groups lead to a number of empty subspaces, while other
subspaces will be swarmed by players. In these subspaces, a
linearly increasing number of intermediate nodes is needed

2See sections 2.2 and 3.1 for details.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 (

B
yt

es
/s

)

Group size

PubSubMMOG
SimMUD

Vast

Figure 4: Average bandwidth, playground-
size: 10, 000m ∗ 10, 000m

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 (

B
yt

es
/s

)

Group size

PubSubMMOG
SimMUD

Vast

Figure 5: Average bandwidth, playground-
size: 5, 000m ∗ 5, 000m

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 (

B
yt

es
/s

)

Group size

PubSubMMOG
SimMUD

Vast

Figure 6: Average bandwidth, playground-
size: 1, 000m ∗ 1, 000m

to construct the load balancing tree. Thus, the total band-
width needed to deliver the movement messages increases.

Figure 5 shows the bandwidth measurement results on a
smaller playground of 5, 000m∗5, 000m. Vast bandwidth re-
quirements do not change much compared to the 10, 000m ∗
10, 000m playground scenario. There is still no influence of
the group size.

SimMUD shows a slight increase in traffic. It averages
slightly above 1,1 kByte/s: Because of a smaller playground,
the subspaces are smaller. While the average number of
players inside a subspace remains constant, a player has to
subscribe to multiple subspaces more often because he is
near a subspace boundary.

Looking at PubSubMMOG, the influence of group size
becomes even more obvious. With a group size of one, the
traffic, 350 (875) kByte/s is not much higher than in the first
scenario. However, with a group size of 40 the bandwidth
requirements rises to 1 kByte/s (2.5 kByte/s).

Figure 6 shows the results from the last scenario with a
playground size of 1, 000m∗1, 000m. In this scenario, Vast’s
bandwidth usage starts to be affected by group size: With a
group size of 40, Vast uses 1,5 kByte/s, which is about 50%
more than with a group size of 1. Additionally, the variance
starts to get significant. This is caused by consistency prob-
lems that arise in scenarios with high node densities[1]: some

players will be dropped and be unable to find new neighbors,
thus sending no data at all. At some additional traffic costs,
these consistency problems might be alleviated[9].

SimMUD is the only protocol with a bandwidth require-
ment still not affected by the group size: it levels at slightly
above 3 kByte/s. However, this is about three times as much
as SimMUD used in the scenarios above.

PubSubMMOG sees a dramatic increase in traffic as well:
it starts at 1.25 kByte/s (3.1 kByte/s) for a group size of 1,
reaching 3.5 kByte/s (8.75 kByte/s) for a group size of 40.

Summary: For a wide range of parameters, Vast’s
traffic usage is not affected by local or global player density.
Only if the local player density becomes high3, Vast starts
to generate significantly more traffic.

SimMUD seems to be completely unaffected by local player
density. However, an increase of the global player density
will severely affect SimMUD.

PubSubMMOG is affected by both global density and lo-
cal density. Especially with bigger group sizes, the dynamic
construction of load balancing trees seems to be even more
inefficient than SimMUD’s implicit multicast trees.

5. CONCLUSIONS AND FUTURE WORK
We have shown with our simulations, that Vast performs

best regarding the delay criterion. As all mutual notification
protocols share the design principle of one-hop communica-
tion for event messages, this result can be generalized. Addi-
tionally, mutual notification ensures that the message delay
is not affected by global or local player density, as long as a
player does not exhaust his bandwidth capacity. As shown
in the simulations, the bandwidth requirements of a mutual
notification protocol are in most cases moderate, and only
increase in case of extreme local and global player density.
However, in these cases the bandwidth demand was smaller
than the demand of the other protocols.

ALM based protocols like SimMUD show moderate delays
and average bandwidth requirements. As they are based on
well researched ALM protocols, they are in most cases easy
to implement and stable, making them a good alternative for
specific scenarios. However, they do not cope well with high

3500 players in an area of 1000m ∗ 1000m corresponds
roughly to the most crowded area in World of Warcraft dur-
ing peak time.

global density, which leads to high bandwidth consumption
and almost unacceptable delays.

Most simulation results for PubSubMMOG show a rela-
tively bad performance. However, most problems arose from
PubSubMMOG’s poor timeslot design. Without that, the
delays of PubSubMMOG would have been fairly compet-
itive, albeit not as good as Vast’s results. As an impor-
tant advantage over ALM based SimMUD, the delay did not
increase much when confronted with high player densities.
High local densities had some impact, but only increased la-
tencies logarithmically. This advantage came at the cost of
a fairly high bandwidth consumption.

As mutual notification based protocols seem to be the
most promising candidates for low-delay multiplayer gam-
ing, we would like to further evaluate this class of protocols.
A problem in these networks can be stability [9]. Increasing
stability will have some impact on the required bandwidth.
Therefore, evaluations will have to be conducted on how to
maximize stability while not exceeding a player’s available
bandwidth.

6. REFERENCES
[1] Backhaus, H., and Krause, S. Voronoi-based

adaptive scalable transfer revisited: gain and loss of a
voronoi-based peer-to-peer approach for mmog. In
NetGames ’07: Proceedings of the 6th ACM
SIGCOMM workshop on Network and system support
for games (New York, NY, USA, 2007), ACM,
pp. 49–54.

[2] Baumgart, I., Heep, B., and Krause, S. OverSim:
A Flexible Overlay Network Simulation Framework. In
Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA (May 2007), pp. 79–84.

[3] Castro, M., Druschel, P., Kermarrec, A.-M.,
and Rowstron, A. Scribe: a large-scale and
decentralized application-level multicast
infrastructure. Selected Areas in Communications,
IEEE Journal on 20, 8 (Oct 2002), 1489–1499.

[4] Chen, K.-T., Huang, P., and Lei, C.-L. Game
traffic analysis: an mmorpg perspective. Comput.
Netw. 50, 16 (2006), 3002–3023.

[5] Claypool, M., and Claypool, K. Latency and
player actions in online games. Commun. ACM 49, 11
(2006), 40–45.

[6] Fortune, S. A sweepline algorithm for voronoi
diagrams. In SCG ’86: Proceedings of the second
annual symposium on Computational geometry (New
York, NY, USA, 1986), ACM, pp. 313–322.

[7] GauthierDickey, C., Lo, V., and Zappala, D.
Using n-trees for scalable event ordering in
peer-to-peer games. In NOSSDAV ’05: Proceedings of
the international workshop on Network and operating
systems support for digital audio and video (New
York, NY, USA, 2005), ACM, pp. 87–92.

[8] Hu, S.-Y., and Liao, G.-M. Scalable peer-to-peer
networked virtual environment. In NetGames ’04:
Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games (New York,
NY, USA, 2004), ACM, pp. 129–133.

[9] Jiang, J.-R., Chiou, J.-S., and Hu, S.-Y.
Enhancing neighborship consistency for peer-to-peer

distributed virtual environments. In ICDCSW ’07:
Proceedings of the 27th International Conference on
Distributed Computing Systems Workshops
(Washington, DC, USA, 2007), IEEE Computer
Society, p. 71.

[10] Knutsson, B., Lu, H., Xu, W., and Hopkins, B.
Peer-to-peer support for massively multiplayer games.
INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and
Communications Societies 1 (March 2004), –107.

[11] Ma, A. Caida : tools : measurement : skitter.
http://www.caida.org/tools/measurement/skitter/,
June 2008. accessed on 2008-06-08.

[12] Ng, T., and Zhang, H. Predicting internet network
distance with coordinates-based approaches.
INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE 1
(2002), 170–179 vol.1.

[13] Pittman, D., and GauthierDickey, C. A
measurement study of virtual populations in massively
multiplayer online games. In NetGames ’07:
Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games (New York,
NY, USA, 2007), ACM, pp. 25–30.

[14] Reynolds, C. W. Flocks, herds and schools: A
distributed behavioral model. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on
Computer graphics and interactive techniques (New
York, NY, USA, 1987), ACM Press, pp. 25–34.

[15] Rowstron, A., and Druschel, P. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware 2001 :
IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Germany, November
12-16, 2001. Proceedings (2001), vol. Volume
2218/2001, Springer Berlin / Heidelberg.

[16] Smed, J., Kaukoranta, T., and Hakonen, H.
Aspects of networking in multiplayer computer games.
In Proceedings of International Conference on
Application and Development of Computer Games in
the 21st Century (Hong Kong SAR, China, Nov.
2001), L. W. Sing, W. H. Man, and W. Wai, Eds.,
pp. 74–81.

[17] Vik, K.-H. Game state and event distribution using
proxy technology and application layer multicast. In
MULTIMEDIA ’05: Proceedings of the 13th annual
ACM international conference on Multimedia (New
York, NY, USA, 2005), ACM, pp. 1041–1042.

[18] Yamamoto, S., Murata, Y., Yasumoto, K., and
Ito, M. A distributed event delivery method with
load balancing for mmorpg. In NetGames ’05:
Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games (New York,
NY, USA, 2005), ACM, pp. 1–8.

[19] Yao, Z., Leonard, D., Wang, X., and Loguinov,
D. Modeling heterogeneous user churn and local
resilience of unstructured p2p networks. In ICNP ’06:
Proceedings of the Proceedings of the 2006 IEEE
International Conference on Network Protocols
(Washington, DC, USA, 2006), IEEE Computer
Society, pp. 32–41.

