

6. Mar 2009 - KiVS Workshop on Global Sensor Networks (GSN09)

Institute of Telematics, University of Karlsruhe (TH) Karlsruhe Institute of Technology (KIT)

Internet of Things ... a new Era

Evolution of our technological environment

systems per object systems per person

time

Every object has an identity

Iives in the physical and in the digital world

Is the Internet of Things here already?

- Wall-Mart uses RFID heavily chain
 - forced suppliers tots)
 - identity linking faster handling → scan pallet

- general: 1.8bn produced 2005, 33bn forecast 2010
- identity linking Tagging the physical er 2D barcodes
 - 2D barcodes e Code)
 - Jujects attach *digital ii*
 - aigital world physical world

Monitoring environment

g. volcano activity sensor nodes

environmental property linking Integration of c proposicechnologies will spawn great value -> pnysical-digital world mashups Integration of ι

RFID ⊂ Internet of Things

- RFID is *not* the Internet of Things
 - one of many enablers for the Internet of Things
 - currently the most popular with large number of deployments
 - → looking at security and privacy only from the RFID perspective is wrong!
- Pitfalls from thinking RFID is all
 - Evolution of an RFID object name service (ONS)
 - other identification techniques need object registries, too
 - what about 2D barcodes, sensor nodes, etc.
 - ONS should be about identities, not bound to identification technology
 - Broken Security&Privacy model for Internet of Things
 - ▶ S&P research in RFID, in sensor networks, in ...
 - think of a system that uses RFID, sensor networks, mobile phones ... how to integrate? RFID tag and 2D barcode attached to sensor node?
 - will seperate security models prevent a system model?
 - Thinking of the Internet of Things in more general may yield a better security and privacy model

Evolution of Security&Privacy

Evolution of Security&Privacy

• Is there a better evolutionary road?

Systematic Approach to Security&Privacy

- First small steps towards systematic approach
 - 1. Categorization of topics in the Internet of Things
 - ► Take a step back from the technical perspective
 - What are the generic topics taking part?
 - 2. Assign technologies to topics
 - What technologies fall into which topics?
 - Do technologies appear in several topics?
 - 3. Analyze sensitivity of topics to S&P
 - See how sensitive topics are to S&P properties?
 - Don't analyze technologies, analyze topics!
 - 4. Analyze state of research in topics
 - How much research has been done for the S&P properties?
 - Has something been neglected?

What topics make up the Internet of Things

What technologies are attached to the topics

What technologies are attached to the topics

- Definitely not complete, needs more work
 - but completeness it not the point here!
 - > providing a first approach to categorization

The Role of RFID

• Important point: RFID spans several topics

The Role of RFID

- Important point: RFID spans several topics
 - Communication
 - between tag and reader
 - Sensors
 - the reader senses the tag
 - Devices
 - reader and tag are devices
 - Localization/Tracking
 - if you know the reader location, you roughly know the tag and therewith object location
 - Identification
 - the unique identification of the tag through the reader

- Mid summary: takeaway points from last slides
 - RFID is assigned to several topics
 - Being unaware of this dual-use can end up badly
 - Same with IP addresses! Used as locator and identifier. Now research into ID/Locator split
 - Point is not to take RFID apart technically, but be aware of the multi-use when developing protocols
 - S&P currently done per technology, not per topic

Key question

Is it possible to design generic S&P mechanisms for a *topic* rather than for a *technology*?

12

Sensitivity to Security&Privacy

- Now that we have the general topics
 - → how sensitive are they to S&P properties?

Property	Integrity	Authenticity	nenticity Confidentiality		Availability	Regulation
Communication	+++	+++	+++	++	+++	+
Sensors	+++	++	+	+++	+	+++
Actuators	+	+	+		+	++
Storage	+++	++	+++	+++	+	+++
Devices	+++	+	+	++	++	++
Processing	++	+	+	+++	+	+++
Localization/Tracking	+	+	+++	+++	+++	+++
Identification	++	+	+++	+++	+++	+++

Example

- Communication has high sensitivity to confidentiality
 - don't want others to read my data
- Sensors have low sensitivity to confidentiality
 - can always place my sensor near and sense the same physical property, therefore sensing in itself is not confidential

13

State of Research

- State of research in areas highly sensitive
 - → research areas that have been neglected?

Property Topic	Integrity	Authenticity	Confidentiality	Privacy	Availability
Communication	2	2	3		1
Sensors	2			1	
Actuators					
Storage	3		3	1	
Devices	1				
Processing				1	
Localization/Tracking			3	1	2
Identification			3	1	2

- Example
 - Devices highly sensitive to integrity but few research
 - devices that can affect to the physical world
 - physical world DDoS from digital systems

Generic Security&Privacy

- And what now?
 - categorization and analysis is a first step towards understanding the Internet of Things
 - need to work out details
- Develop generic S&P mechanisms
 - that work on a topic, not on a technology
 - similar to privacy preserving data-mining
 - makes interworking between technologies easier
 - generic mechanisms with specializing properties
 - can't deploy protocol for RFID and WLAN communication, but what about RFID and 2D barcodes?
 - what are the common, what is different?
 - proving properties of the protocol can be easier
- → Enables to develop an integrated S&P approach for the Internet of Things

Conclusions

Summary

- RFID ≠ Internet of Things, need more generic S&P approach
- looking at topics, not directly at technologies can make it easier to develop a S&P model
- generic S&P mechanisms can provide better interworking that is required for the Internet of Things

Outlook

- categorization, sensitivity etc. only reflect my opinion, need discussion about these
- try to develop generic mechanisms, is it possible, is it better?
- learn from others
 - cryptographic identifiers, privacy preserving data mining, ...
 - ▶ multi-channel protocols (difference between RFID and 2D barcodes? → mainly the channel)

16

