
AUTHENTIC QUERY DISSEMINATION AND DATA AGGREGATION
IN WIRELESS SENSOR NETWORKS

Evaluation / Security-Energy-Tradeoff

Joachim Wilke, Benno Evers, Martina Zitterbart

{wilke, evers, zit}@tm.uka.de

Insitute of Telematics, Universität Karlsruhe (TH)This work is part of the “ZeuS”

research project funded by
“Landesstiftung

Baden-Württemberg“, Germany.

Motivation & Contribution

Comparison of ESAWN’s energy consumption in contrast to
traditional communication schemes

Non-Authentic Aggregation (no security, lowest energy consumption)
Authentic Non-Aggregation (full security, not energy efficient)

Simulative results
Average of incoming edges in aggregation tree δ=2

Probability of authentic aggregation (P2

)

comprom.
nodes w= 1 2 3

β=1% ESAWN-1 94,6% 99,9% 100%

β=10% ESAWN-1 0,4% 60,6% 95,3%

Zinaida Benenson, Michael Heinold, Felix Freiling

{benenson, heinold, freiling}@uni-mannheim.de

Dependable Distributed Systems, University of Mannheim

System Model
Only energy efficient security operations
In-network processing / data aggregation

Uses an aggregation function f(…) = agg
Reduces communication, saves energy

Strong attacker model
Reprogram nodes, read-out memory (i.e., keys)
Adversary gains physical access to at most β%

of all nodes (node compromise)
Possible attacks

(1)

Inject own queries to the network
(2)

Fake aggregation results

Idea: Trade-off Security and Energy
Probabilistic authenticity

Messages authentic with predefined probability
Configurable probability (parameters)
Authenticity with higher probability requires more energy

Contributions
AQF

guarantees authenticity of queries
with a predefined probability P1

ESAWN

guarantees authenticity of aggregates
with a predefined probability P2

Only symmetric cryptography used
Trade-off probabilistic authenticity and energy usage

ESAWN: Extended Secure Aggregation for
Wireless Sensor Networks

Basic Protocol
Each node i

is assigned w

witnesses (the first w

predecesssor of i

in the tree)
The witnesses re-compute the aggregate of i

(aggi

) and compare both
An alarm if sent towards the sink if any comparison fails

Communication is secured with authenticated encryption E

using pairwise
symmetric

keys
Examples (w=1)

Drawback: Alarms cannot be verified, no possibility to identify compromised
nodes (for this, refer to the ESAWN-Framework [1])

[1] Joachim Wilke, Erik-Oliver Blaß, Felix C. Freiling, Martina Zitterbart: A Framework for Probabilistic,
Authentic Aggregation in Wireless Sensor Networks. Praxis der Informationsverarbeitung und
Kommunikation, 2:116–126, 04/2009, ISBN 978-3-598-01234-1.

3

2

1

0
(sink)

(2) compromise to fake
query results

x

y

agg

6

7

4

5

Query

Query

(1) compromise to inject
own queries

AQF: Authenticated Query Flooding

Analysis / Security-Energy-Tradeoff

20 compromised nodes
Authenticator length 200 Bits
Optimal: 9 keys per node
pf = 0.14
Probability to receive and accept

an illegi-

timate query

after 3 hops: 0.143 ≈

0.003

)1(1
2
11 1 f

kn

f pP
L
kp −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

n

compromised nodes (i.e., some

keys known to the adversary)
Adversary guesses all other authenticator bits
Probability to accept the illegitimate

query:

Adjustment to the number of compromised nodes possible
Trade-off: authenticator longer ⇒ pf

smaller
⇒ more security ⇒ more energy used

L=200,

k=3

Base Station

1-bit-MACQuery Q

key1 key200…

Q 011…011…001…110…0101

Node
key15 key77 key163

15 77 1631 200

key15 key163key77… … …

1-bit-MAC(key15

, Q) =

1?
1-bit-MAC(key77

, Q) =

0?
1-bit-MAC(key163

, Q) =

1?

Initialization
Known to all:

Hash function h()

Base Station:
L

symmetric keys:

key1

, …, keyL

Each node:
k

keys from L

(randomly chosen)

Base Station: compute authenticator
Query Q, compute h(Q)
Compute authenticator (L

bits) <b1

… bL

>:
bi

= 1-bit-MAC(keyi ,

Q) = [h(keyi ,

h(Q))]last_bit

Send message mQ

= b1

… bL

||Q

Node: verify authenticator
Compute h(Q)
For each known keyi

do:
1-bit-MAC(keyi

, Q) = bi

?
If ≠, reject Q

If all 1-bit-MACs correct, send mQ

= b1

… bL

||Q

pf

pf

pf

pf
2

pf
2 pf

3

pf
3

Example 2

Node 4 compromised

Example 1

No node compromised

f(x,y)
=agg

	Foliennummer 1

