
Distributed Experiment Management
for Large-scale Testbeds

Christian Hübsch
Institute of Telematics

Universität Karlsruhe (TH)
huebsch@tm.uka.de

Christoph P. Mayer
Institute of Telematics

Universität Karlsruhe (TH)
mayer@tm.uka.de

Large-scale testbeds like G-Lab or PlanetLab provide re-
alistic environments for real-world evaluation of distributed
applications. They offer means for realistic testing and vali-
dation that are hard to achieve using simulations. In contrast
to simulated environments, real-world testbeds require a much
more complex experiment management. Testbeds do provide
management for the control of the testbed itself, nevertheless
we see little support for the management of experiments:
E. g. due to insufficient load-balancing of experiments many
nodes suffer high load while others idle. Furthermore, use of
centralized control machines does not scale as it results in high
load through deployment, or status and result collection.

We identify four phases for what we call experiment man-
agement: (1) experiment preparation (e. g. selecting an appro-
priate subset of testbed machines), (2) experiment package
deployment, (3) experiment execution (e. g. status feedback and
handling of load changes), and (4) experiment data collection.
Current solutions have been built with the idea of automating
the four-step process of experiment management in a cen-
tralized way (e. g. [1]). In this paper we take a different ap-
proach towards the challenges in communication for experiment
management using decentralized peer-to-peer mechanisms. Our
approach has several advantages over a centralized solution:
(i) implicit preselection of machines appropriate for the ex-
periment, (ii) efficient distribution of experiment packages,
(iii) load-balancing between competing experiments, and (iv)
possibility of distributed preprocessing of experiment results
during data collection. We employ a tree-like overlay structure
O that includes all testbed machines T. We define a simple
fitness metric mkt(w1 · p1, . . . , wn · pn) =

∑n
i=1 wi · pi = x

for experiment k and machine t with machine-dependent pa-
rameters pi and experiment specific weights wi. Parameters
pi can be local values like CPU load or free RAM, as well
as inter-machine relations like network delay. The metric m
is experiment-specific and defined by the user running the
experiment. We use m to iteratively build up the overlay
structure O, resulting in a tree-like overlay with machines
ordered with respect to their fitness m. Machines that have
a high fitness for the specific experiment reside in the upper
layers of O. The machine in the root of O is further used as
gateway towards the experiment machines T.

We see the selection of an appropriate subset of testbed
machines as the first step (1) of experiment management.
Ideally, the number of available testbed machines |T| is larger
than the set of machines S that are needed for the experiment.
As O is ordered with respect to the specific metric m, the best-
suited machines for experiment k reside in the upper part of

the tree. Sending out of the experiment package in step (2) is
performed as follows: The gateway machine is delivered with
the package and the required number of machines s = |S|.
Distribution of the experiment package is now performed in
a scalable manner employing Application-Layer Multicast [2]
on the tree structure. Each node decreases s and forwards s−1

2
together with the package towards its children as long s > 0.

During the experiment (3), the metric-based tree is further
maintained, ordering machines with respect to their ‘fitness’
higher or lower in the structure. As machines fall too low they
are considered unusable for the experiment and excluded. They
are replaced by new machines with a sufficient tree height in
order to preserve the number of experiment participants. This
implies that machines in the tree monitor their children and can
deploy the experiment package to new children due to reorder-
ing of the tree. Also, foreign experiments imposing load on
machines are reflected in the specific metric evaluations, leading
to such nodes being located lower in the resulting tree. The
metric-based tree structuring provides implicit load-balancing
between multiple experiments at experiment preparation and
during execution.

Status reports sent by the machines (3) to the central control
system result in high load and are considered un-scalable. In our
approach, status reports during the experiment are sent up the
tree using concast. This way aggregation through processing
of status information can be performed by machines in the
tree and therewith overall status information is reduced. How
strong status can be aggregated is highly experiment specific.
The same mechanism is used for collecting experimental results
from the machines (4) when the experiment has ended. Here,
aggregation through preprocessing can be performed, too, again
highly depending on the specific experiment. We see high
reduction of the amount of traffic through precomputation—
e. g. of average values—inside the tree in a distributed fashion.

The presented decentralized approach for experiment man-
agement in large-scale testbeds has several advantages over the
conventional way. Besides implicit load-balancing it enables
efficient distribution of experiment packages, maintenance of
the machine set during simulation, and collection of simulation
results using aggregation and preprocessing. Due to space
limitations, we will show the feasibility of our approach in
the presentation by simulative evaluation.

REFERENCES

[1] “Stork,” http://www.cs.arizona.edu/stork.
[2] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. Georganas, “A Survey

of Application-Layer Multicast Protocols,” Communications Surveys &
Tutorials, IEEE, vol. 9, no. 3, pp. 58–74, Jul. 2007.

