
Bloom Filters and Overlays for Routing
in Pocket Switched Networks

Christoph P. Mayer
Institute of Telematics, University of Karlsruhe, Germany

mayer@tm.uka.de

ABSTRACT
Pocket Switched Networks (PSN) [3] have become a promis-
ing approach for providing communication between scarcely
connected human-carried devices. Such devices, e. g. mobile
phones or sensor nodes, are exposed to human mobility and
can therewith leverage inter-human contacts for store-and-
forward routing. Efficiently routing in such delay tolerant
networks is complex due to incomplete knowledge about the
network, and high dynamics of the network. In this work we
want to develop an extension of Bloom filters for resource-
efficient routing in pocket switched networks. Furthermore,
we argue that PSNs may become densely populated in spe-
cial situations. We want to exploit such situations to per-
form collaborative calculations of forwarding-decisions. In
this paper we present a simple scheme for distributed deci-
sion calculation using overlays and a DHT-based distributed
variant of Bloom filters.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design —Distributed networks, Store and
forward networks

General Terms
Routing, Data structures

Keywords
Pocket Switched Network, Bloom Filter, Overlay

1. BLOOM FILTERS FOR PSN ROUTING

Standard Bloom Filters.
We propose the use of Bloom filters [1] for space-efficient

routing in PSNs, as they can encode a device’s contact graph
and therewith be used to calculate good forwarding strate-
gies. A Bloom filter is a probabilistic and space-efficient data
structure for efficient lookups. It consists of a bit array B of
size m. Using k different hash functions hi(x) 7→ [0, m− 1]
elements x ∈ S are hashed to k different positions di = hi(x)
and the array B updated in the corresponding positions:
B[di] = 1. Correspondingly, the lookup of an element x ∈ S

Copyright is held by the author/owner(s).
CoNEXT’09 Student Workshop, December 1, 2009, Rome, Italy.
ACM 978-1-60558-751-6/09/12.

checks whether all k bits B[di] are set to 1. A Bloom filter
has no false negatives (x ∈ B → ∀k : B[di] = 1), but can
have false positives (x /∈ B 9 ∀k : B[di] = 0).

Basic Forwarding on Bloom Filters.
We assign every device Dj an identifier IDj (e. g., MAC

address, random/cryptographic identifier). Furthermore, one
Bloom filter Bj that represents contact information with
other devices is stored per device Dj . When two devices
Dj and Dk meet, first, each device updates its Bloom fil-
ter with the other device identity (insert(Bj , IDk), and
insert(Bk, IDj)). Second, each device requests the Bloom
Filter of the other device. For each message stored on Dj for
forwarding, Dj checks whether Dk has contact information
in its Bloom filter for the destination messages stored on
Dj , and forwards messages accordingly. Using this scheme
contact information is collected and used for message for-
warding in a space-efficient but non-probabilistic way.

Fuzzy Bloom Filters.
Standard Bloom filters answer membership queries in a

binary yes/no style. We now extend Bloom filters to answer
membership queries in probabilistic 0%–100% ways to de-
sign a resouce-efficient PRoPHET [5]-like scheme. Therefore
we define device-specific probabilities p ∈ P, pi ∈ [0, . . . , 1]
so that for each xi ∈ S the contact probability is P (xi) =
pi. When inserting xi into the Bloom filter using pi, we
no longer set k bits in B to 1 but rather k · pi bits with
0 ≤ (k · pi) ≤ k. If ∪ and ∩ operations are required on
the Fuzzy Bloom filters, we can’t set random k · pi bits but
are required to start filling up the k · pi bits e. g. from low
to high. Membership queries can now be answered by the
Bloom filter with probabilities that are calculated using the
fraction of actual bits set. The granularity of pi is directly
constrained on the number of hash functions k. Deriving
the false-positive rate and calculating the optimal size of B
is subject to current research.

Aging Fuzzy Bloom Filters.
We can now perform ‘aging’ of all xi ∈ S that have been

inserted into the Fuzzy Bloom Filter by resetting bits in
B. Therefore, in each timestep t (e. g. one day) we set a
small percentage of random bits of Bj from 1 to 0. This
way the membership probabilities returned by the Fuzzy
Bloom Filter now decrease over time. Using this scheme,
a highly resource-efficient probabilistic routing in PSNs can
be achieved that is applicable even to small sensor nodes.

Figure 1 shows an example of such a fuzzy Bloom filter

 0
 10

 20
 30

 40
 50

 60 0
 200

 400
 600

 800
 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

P(x)

Time

Element x

P(x)

Figure 1: Fuzzy Bloom filter with aging entries

with aging entries using 7 hash functions. By using 7 hash
functions the granularity of p ∈ P is restricted to multiples
of ∼ 14%. At timestep 30 we insert x0, · · ·x4 into the Bloom
filter. Each inserted xi has initially 100% of required bits
set to 1 and therewith a probability of 1.0 returned by the
lookup function. In each timestep 1% of random bits set to
1 are reset, resulting in the P (xi) = pi to decrease. Using
this mechanism the pi in the Bloom filter become fuzzy over
time and vanish. Using this meachanism probabilities in the
Bloom filter of contact encounters are dynamic a can be used
to implement resource-efficient PSN routing.

2. COLLABORATIVE FORWARDING
PSNs are considered scarcely connected but dense PSNs

can occur, e. g. in mass transportation like trains, or city
centers. Detecting and exploiting such situations can pos-
sibly improve routing efficiency. We propose to build up
spontaneous overlay networks of devices—e. g. traveling to-
gether in a train—to collectively calculate forwarding deci-
sions in a distributed and scalable fashion. We build upon
our extended Bloom filter schemes detailed in Section 1.

In case of large numbers of devices a naive scheme that ex-
changes all Bloom filters between all devices is not scalable.
To scalably perform collaboration we use a scheme similar
to Distributed Bloom filters [4]: All Bloom filters are split
into segments of equal size. Segments are distributed us-
ing a segment index in a DHT that all devices take part
in. Each device that stores a specific segment of all Bloom
filters performs logical OR operations to merge segments.

A membership query can now use the DHT to resolve
whether any of the devices taking part in the overlay has
contact information for a given xi. Therefore we apply the
k hash functions to calculate k indexes into the Bloom filter.
For each of the indexes we calculate the segment index and
send queries into the DHT using segment index, and bit in-
dex inside this segment. This way, k requests are send into
the DHT in parallel to perform queries of specific bits. Using
the Fuzzy Bloom filters as described in Section 1 probabilis-
tic membership queries can be performed in a distributed
and scalable way, where only the highest peering probability
is returned by the DHT. Furthermore, if a specific proba-
bility threshold for pi is required, testing the highest k’th
bit first will reduce message overhead. This way a device
can quickly find out whether a participating device knows
xi with a probability of e. g. ≥ 80%. In case the required
highest bit is not set, a quick rejection is possible.

If a match has been found in the DHT the exact node

needs to be determined that contributed the specific parts
of the Bloom filter. This information can only be determined
by the device-specific Bloom filters. In a first approach, a
broadcast scheme is used to find the device that contributed
the specific bits. Such broadcast requests can be answered
by receiving devices very quickly, as they can start checking
bits from top to bottom, starting with hk−1. This way they
can easily ignore the request if the first bit from the top
hash functions is not set. A device that successfully checked
all required bits of the hash functions hk−1 . . . h0 will finally
answer the querying device.

Using the presented scheme cooperation between devices
can be implemented scalably and possible forwarding devices
with the highest peering probability can be detected quickly.
For actual message forwarding the specific device needs to be
detected that contributed this highest peering probability.
A first approach is to use a broadcast scheme with quick
rejection at the receiving devices.

3. CONCLUSION
In our research we are looking into resource-efficient rout-

ing for Pocket Switched Networks using Bloom filters and
the collaborative calculation of message forwarding strate-
gies using spontaneous overlay networks. The goal is to
encode as much of the contact graph as possible to provide
quality forwarding decisions and efficient message routing,
with focus on resource-constrained devices. We are currently
working on evaluations and aim to integrate the presented
scheme into the Ariba platform [2]. Furthermore, handling
churn in the overlay is critical—as devices are exposed to
human mobility—and subject to future research.

Acknowledgments
The author thanks Oliver P. Waldhorst for helpful comments
and suggestions. This work was funded as part of the Spon-
taneous Virtual Networks (SpoVNet) project by the Lan-
desstiftung Baden-Württemberg within the BW-FIT pro-
gram.

4. REFERENCES
[1] B. H. Bloom. Space/time Trade-offs in Hash Coding

with Allowable Errors. Communications of the ACM,
13(7):422–426, July 1970.

[2] C. Hübsch, C. P. Mayer, S. Mies, R. Bless, O. P.
Waldhorst, and M. Zitterbart. Reconnecting the
Internet with ariba: Self-Organizing Provisioning of
End-to-End Connectivity in Heterogeneous Networks.
In Proceedings of ACM SIGCOMM, Barcelona, Spain,
Aug. 2009. Demo.

[3] P. Hui, A. Chaintreau, R. Gass, J. Scott, J. Crowcroft,
and C. Diot. Pocket Switched Networking: Challenges,
Feasibility, and Implementation Issues. In Proceedings
of the Workshop on Autonomic Communications, pages
1–12, Athens, Greece, Oct. 2005.

[4] C. Jamard, G. Gardarin, and L. Yeh. Indexing Textual
XML in P2P Networks Using Distributed Bloom
Filters. In Proceedings of DASFAA, pages 1007–1012,
Bangkok, Thailand, Apr. 2007.

[5] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
Routing in Intermittently Connected Networks.
SIGMOBILE Mobile Computing Communications
Review, 7(3):19–20, July 2003.

