Motivation

Pocket Switched Networks (PSN)
- **opportunistic networking** in intermittently connected human networks
- **store-and-forward communication**

Problems and solution approach
1. **large forwarding tables** in probabilistic routing → Bloom Filter extensions
2. **non-scalable handling of dense PSN** situations (e.g., bus, train, place) → overlay with DHT approach

Bloom Filter Extensions

Bloom Filter: space-efficient element storage
- **lookup functionality**, no false negatives, tunable false positives
- \(m \) bits, \(k \) hash functions \(h_i(x) \): \(ID_x \mapsto [0,m-1] \)
 - \(insert(ID_x) \)
 - \(ID_x \)

- **lookup** \(ID_x \) → **true** if all \(k \) bits are set

Extension – Fuzzy Bloom Filter
- use \(f \) hash functions out of \(k \) available, with \(j/k \sim p \), granularity of \(p \) depends on \(k \)
- false positive rate has different semantics, new error rate is induced

Extension – Aging Fuzzy Bloom Filters
- aging element probabilities over time
- deletion of random bits ages all elements in the Bloom Filter

Aging Fuzzy Bloom Filter:
- Five elements inserted and aged over time.
- False positives arising can be seen

Conclusion and Outlook

Fuzzy Bloom Filters allow for
- **space-efficient probabilistic forwarding** and in combination with overlays and DHTs
- **scalable forwarding** in dense PSNs

Next steps
- formal analysis of Bloom Filter extensions
- simulative evaluation of overlay scheme
- implementation using the **ari** library

www.ariба-underlay.org

→ Space-efficient storage of forwarding tables for probabilistic forwarding