Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

Fabian Hartmann and Bernhard Heep

P2PNet'09 (in conjunction with ICUMT'09) St. Petersburg, Russia

Universität Karlsruhe (TH) Research University • founded 1825

Structured P2P overlays offering key-based routing (KBR)

- Various service possible
 - e.g. decentralized directory services
- Broad range of available protocols
 - Chord, Pastry, Bamboo, Kademlia, Broose, Koorde, CAN, …
 - usually O(log N) hops per message
- Problem: high routing latencies #hops * d_{avg} (recursive routing)

Decreasing routing latencies by exploiting network coordinate systems

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

2

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

Goals

- Optimization of KBR paths
- Speed-up of DHT get()-operations
- Related Work
- Problems and solutions
 - Non-uniform nodeld distribution
- Implementation
 - Overlay Framework OverSim
- Evaluation
- Summary and Outlook

Paths in prefix-based KBR Overlays

- Siblings: Close nodes in ID space
- Neighbors: Physically close nodes in underlay
- Nodelds uniform distributed
- → Usually: Siblings ≠ Neighbors

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

Minimizing KBR latencies in prefix-based peer-to-peer overlays

- Enabling relationship between underlay and overlay: siblings ↔ neighbors
- \rightarrow More efficient routing
- → Faster results in DHTs

Idea: Mapping of underlay on corresponding nodels prefix (like a city's area code)

- 1. Defining node positions using network coordinate systems (NCS)
- 2. Mapping of network coordinates onto nodelds:
 - → Topology-based Nodeld Assignment

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

- Topologically-sensitive construction of CAN [1]
 - Latency measurements to dedicated nodes (landmarks)
 - → m landmarks → m! RTT-orderings
 - 1st dimension gets divided into m parts, 2nd dimension gets divided into m-1 parts, ...
 - → lower latencies but non-uniform nodeld distribution

• Canary [2]

- CAN using Vivaldi-based nodelds
- → very low latencies but non-uniform nodeld distribution
- [1] Ratnasamy et al., "A Scalable Content-Addressable Network", in Proceedings of ACM SIGCOMM, 2001
- [2] Kojima et al., "Embedding Network Coordinates into the Heart of Distributed Hash Tables", in *Proceedings of the 9th IEEE International Conference on Peer-to-Peer Computing (P2P09)*, 2009

P1: How can nodes be aware of their underlay position?

- **P2:** What mapping (position \rightarrow prefix) should be used? Need for a well-defined mapping, known by all nodes
- **P3:** How can load balancing be achieved?
 - Uniform distributed hashes vs. non-uniform distributed node positions / coordinates
- **P4:** How can replicas reallocated?
 - Replicas usually on siblings in DHTs
 - → CBR: Hotspots in geographic areas
 → All replicas could be lost if subnet fails

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

- Usage of GNP / NPS
 - Nodes measure latency to n+1 landmark nodes
 - → Nodes are placed in a synthetic n-dimensional Euclidean space
 - Internet latencies: Triangle equality not valid
 → Coordinates are error-prone
- Why no decentralized NCS? (Vivaldi, ...)
 - Partitioning of the underlay topology in prefix areas using a global picture
 - Fixed base for global picture of coordinate distribution needed
 - Coordinate space is spanned by landmark nodes using their coordinates as basis

P2: n-dim coordinates \rightarrow 1-dim Nodeld P3: Load Balancing

P2: Find a function

 $f: \mathbb{R}^d \to P \quad \text{with } P = \{ p_i \in \mathbb{N}_0 \mid p_i < 2^i, 1 \le i \le max \}$

- ➔ Partitioning: Bisection of coordinate space for each dimension
- **P3**: Simple cutting into halves leads to non-uniform node number in each area
- Usage of global picture: Bisection according to distribution of nodes

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

9

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

Coordinate-based Routing (CBR)

 Divide the underlay into 2^d main areas

FLEMATICS

- Subdivide areas into prefix areas
 - → all according to coordinate distribution

- Overlay hops leading target-oriented to the destination key
 10...
- CBR combined with Proximity Neighbor Selection (PNS)

Routing table in Pastry/Bamboo

www.tm.uka.de

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

- Need for a Data Harvesting Phase
 - Latency measurements (landmarks / nodes)
- n-dimensional picture with fixed basis (GNP)
- Here: 2-dim. Skitter data (usually: 5d-7d)

 Partitioning according to CBR rules

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

11

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

P4: Reallocation of Replicas

Gathering of replicas in one region should be avoided!

- → Solution: Multiple hashs K_n of value V $K_n \in C$, with $C = \{K | K = H^i(V), 0 < i \leq m\}$
- Search keys are spread over whole network

Proximity-aware choice of DHT replicas possible

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

12

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

- (1) Landmark Initialization
- (2) Data Harvesting Phase
- (3) Creation of Global Knowledge
- (4) Utilization

Implementation

Integration of CBR into overlay framework **OverSim** [3]

- Extended Simple Underlay: Violation of triangle Inequality [4]
- Central module for providing CBR information
 - ▶ Global Knowledge: mapping → prefixes

The Overlay Simulation Framework

http://www.oversim.org/

- GNP/NPS coordinate system integrated into OverSim's NeighborCache module
- New DHT module on Tier 1: Reallocation of replicas
 → common DHT-API: *put()*, *get()*
- [3] Baumgart, Heep, and Krause, "OverSim: A flexible overlay network simulation framework", in *Proceedings of 10th IEEE Global Internet Symposium (GI'07) in conj. with IEEE INFOCOM*, 2007
- [4] Jedlie et al., "Network coordinates in the wild", in Proceedings of USENIX NSDI, 2007

Simulation: Set-up and Parameters

- Evaluated protocols with CBR: Pastry, Bamboo
 - 2500 nodes (4500 without churn), 20 random seeds
- 2h measurement time after network initialization
- Churn: weibull-distributed lifetime model [5][6]
- Varied parameters:
 - **bitsPerDigit** {1, 2, 4}
 - Churn {no churn, moderate churn}
 - Network coordinate system {GNP, NPS (maxLayer = 3)}
 - CBR stopAtDigit {noCBR, 1, 2, 3, 4}
 - **DHT replicas** {1, 2, 3, 6}
 - [5] Stutzbach et al., "Understanding churn in peer-to-peer networks", in *IMC'06: Proceedings of the 6th ACM SIGCOMM conference on Internet measurements*, 2006
 - [6] Steiner et al., "Long Term Study of Peer Behavior in the KAD DHT", in IEEE/ACM Transaction on Networking, 2009

Evaluation: CBR without Churn

- Pastry: Latency decrease up to 13%
- Bamboo: up to 20%
- NPS leads to higher latencies due to deviation of coordinates from global knowledge

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

16

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

Evaluation: CBR under Churn

- Pastry: Latency decrease up to 37%
- Bamboo: up to 16%
- Like in no churn scenarios: NPS comes with higher latencies

17

Institute of Telematics Universität Karlsruhe (TH)

Evaluation: CBR-based Replication

- Significant speed-up of get()-operations: Up to 61% decrease with 6 spread replicas
- Effect is observable with up to 2 manipulated digits

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

18

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)

- Landmark infrastructure must be provided
- Coordinates must be accurate
 - \rightarrow else latencies increase
- Mapping → Global Knowledge
 - Must be distributed (e.g. during bootstrapping procedure)
 - Node distribution must not change

Conclusion & Future Work

Summary:

- CBR significantly decreases KBR latencies
- CBR-based DHT replication strategy decreases latencies of get()-operations up to 60%

Future Work:

- Evaluation in real networks and testbeds like PlanetLab and G-Lab
- Usage of decentralized NCS
- Mobility?

20

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

Thank you!

Any Questions?

Coordinate-based Routing: Refining Nodelds in Structured Peer-to-Peer Systems

21

Bernhard Heep – P2PNet'09, St.Petersburg

Institute of Telematics Universität Karlsruhe (TH)