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Abstract—Large-scale attacks like Distributed Denial-of-
Service (DDoS) attacks still pose unpredictable threats to the
Internet infrastructure and Internet-based business. Thus, many
attack detection systems using various anomaly detection meth-
ods were developed in the past. These detection systems result in
a set of anomalies detected by analysis of the traffic behavior. A
realtime identification of the attack type that is represented by
those anomalies simplifies important tasks like taking counter-
measures and visualizing the network state. In addition, an iden-
tification facilitates a collaboration of distributed heterogeneous
detection systems. In this paper, we first lay the foundations for a
generalized identification system by establishing a model of those
entities that form anomaly-based attack detection: large-scale
attacks, anomalies, and anomaly detection methods. Based on this
flexible model, an adaptable and resource-aware system for the
identification of large-scale attacks is developed that additionally
offers an autonomous processing control.

I. INTRODUCTION

Internet users all over the world are still exposed to attacks
and challenges on the Internet’s availability today. Attacks
like distributed denial-of-service (DDoS) attacks or worm
propagations in fact belong to the daily routine of Internet
usage. Such attacks in the following are called large-scale
attacks since they typically rely on a large number of attackers
that are widely distributed across the Internet. During the last
few years the motivation for large-scale attacks has changed
from gaining fame to gaining money, e. g. by blackmailing the
victims with the threat of a DDoS attack or by selling huge
botnets established by worm propagations. Those attacks and
challenges mostly lead to high financial losses for the victims
even if they last only for a short time—Amazon e. g. had an
average sales volume of about 36 500 $ per minute [1] in 2008.
In addition, according to the Worldwide Infrastructure Security
Report [2] such attacks not only threaten victim host systems
but also the infrastructure of Internet service providers.

Another reason for the increasing number [2] of large-scale
attacks is that tools for launching them—e. g. the Tribe Flood
Network [3]—are easily available in the Internet and easy to
use with only little technical background. In addition, huge
botnets lead to availability of very low-priced DDoS services:
About $ 20 have to be paid for a DDoS attack that runs for
an hour, about $ 100 for a whole day of DDoS [4].

Due to these permanent challenges many research activities
have been performed in the past as well as presently in
the field of attack detection. Known worms and viruses are
mostly identified using signature-based detection systems like
Snort [5]. Since DDoS attacks in the majority of cases use

packets that are conform to protocol specifications, they cannot
be detected by signatures. Detection of DDoS flooding attacks
therefore requires anomaly-based systems like [6]–[9]. In
this context, discrepancies from expected behavior, e. g. non
protocol-conform behavior or abnormal increases of the traffic
volume, are called anomalies.

An early detection in the core network instead of at
the edges of the Internet is desirable in order to protect
the providers’ infrastructure, too. This, however, requires a
resource-saving detection system, e. g. as proposed in [10], or
special hardware. The latter is not considered here because of
its higher costs and less flexibility. Thus, existing resource-
consuming detection methods cannot be executed continu-
ously. In addition, permanent parallel execution of multiple
methods is no longer possible. Therefore, this work contributes
an adaptive and autonomous processing control for in-network
anomaly detection.
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Another challenge in today’s Internet is the increasing het-
erogeneity of participating entities. This may prevent running
certain anomaly detection methods on some detection systems
while usable on other systems, e. g. due to resource constraints
or differences in hardware. Furthermore, different domains
may rely on different anomaly detection methods, e. g. due to
policy decisions or their particular location. Figure 1 shows
a scenario with two heterogeneous detection systems. The
question is how to enable System 1 to communicate its
knowledge and collaborate with System 2 in case it detected
the anomalies A and B? In our opinion, the best solution is
to first perform an identification of the according attack type
and its characteristics. We therefore contribute a generalized
mechanism for the anomaly-based identification of attacks
in this paper. The identification also may simplify taking
countermeasures, quickly interpreting the detection result, and
visualization of the network state. Basis of such an identi-
fication is the set of locally detected anomalies. As shown
in Figure 2, System 1 then is able to communicate that it
detected attack 1. System 2 in turn can interpret the received
information based on its own locally known set of anomalies.

In order to achieve both the identification as well as the
autonomous processing control we, in addition, established a



generalized model of those entities that form anomaly-based
attack detection—large-scale attacks, anomalies, and anomaly
detection methods. This is necessary since lots of existing
anomaly detection methods regard attack identification only
vaguely [11] or not at all [12]. Other approaches assume that,
in case a certain anomaly is detected, this anomaly directly
correlates with a specific attack [6], [7]. This means that an
implicit identification is performed. Lastly, approaches like [8],
[9] use a more precise attack model but are limited to their
respective anomalies. All these approaches are, in summary,
mostly limited and inflexible. Furthermore, coherences be-
tween the various identified attacks are not regarded.
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Fig. 2. Heterogeneous collaborative detection systems

This paper is structured as follows: In Section II the gener-
alized model is introduced. Existing identification mechanisms
are compared in Section III before our solution’s architecture
and the new processing control are presented. Section IV out-
lines the implementation and describes simulation results. The
paper concludes with a summary and outlook in Section V.

A. Requirements

Especially in the area of Internet security, preconditions
and active threats constantly change. This implicates that a
mechanism for the identification of attacks has to provide
flexibility and extensibility to be able to keep up with new
developments in attacks as well as detection methods. Thus,
easy integration of new anomalies, attacks, and detection
methods into the modeling and identification has to be ensured.
Since the identification system should be applicable within the
network as well as at the edge of the Internet, adaptability
is another important requirement. This also holds considering
the heterogeneity of routers and detection systems previously
described. Thus, an identification system has to be able to
adapt to its particular environment and furthermore, to new
requirements if necessary. A last requirement, we regard as
important, is that no manual interaction is necessary as soon
as the system has been set up and is running. This means that
the processing control has to autonomously take decisions and
be able to adapt to new situations.

II. MODELING OF LARGE-SCALE ATTACKS AND
DETECTION ENTITIES

In this section, we establish a model of those entities that
are important in the field of anomaly-based attack detection.
To the authors’ knowledge currently no such generalized
model exists. Our model includes the entities anomaly, large-
scale attack, and anomaly detection method. Then, we
combine actual characteristics of the modeled attacks with
our generalized model in order to create an attack hierarchy.
This extensible and flexible approach provides the basis for the
identification and processing control described in Section III.

At first we have a look at the anomalies. Our anomaly
model is shown in Figure 3(a). The total set of anomalies
can be split into known anomalies and unknown anomalies.
Unknown anomalies are anomalies that have not been ob-
served in the Internet yet. The detectable anomalies are a
subset of the known ones. They can be classified into different
categories, e. g. stochastic, distribution, or protocol anomalies.
An example for a stochastic anomaly is a sudden increase in
the number of observed packets. Distribution anomalies can
be detected if address prefix or port number distributions are
analyzed. If a protocol does not behave as expected, e. g. if
the number of TCP SYN and SYN-ACK packets shows an
imbalance, this is called a protocol anomaly. A subset of the
detectable anomalies are the detected anomalies that can be
used by an identification system, i. e. the anomaly detection
system actually detected these anomalies.

The second model (see Figure 3(b)) refers to large-scale
attacks in the Internet. The set of attacks can—similarly to
the anomaly model—be split into known attacks and unknown
attacks. The set of attacks that are detectable by anomalies
contains known as well as unknown attacks since the latter
may cause detectable anomalies, too. The recordable attacks
form a subset of the intersection of known and detectable at-
tacks and describe those attacks that actually can be identified
by a detection system. Recordable attacks can be classified into
different categories, e. g. DDoS attacks, worm propagations, or
portscans. Although not being attacks at all, flash crowds and
configuration errors are also included into the classification
since they may also cause anomalies. Thus, these categories
should be identifiable, too.

Our third model (see Figure 3(c)) focuses on anomaly
detection methods. A detection method in its generalized
form is described by the following four attributes:

• Preconditions—Meta information about the detection
method, e. g. resource constraints, benefit or dependency
of other detection methods.

• Input data—Information necessary for processing, which
may e. g. originate of preceding methods or stored values.

• Configuration data—Externally specified parameters nec-
essary for processing.

• Output data—Results of the detection method. This data
is actually used as input for the identification mechanism.

Dependent on the fact if they have preconditions and need
input data, detection methods can be further differentiated into
initial methods and conditional methods. Conditional methods
require certain input data whereas initial methods don’t and
thus, can be executed at any time.

Having modeled all involved entities in a generalized man-
ner, in a second step we team these models with a description
of actual attack characteristics as provided e. g. in [13]–[15].
This means, we assign a certain set of detected anomalies to
a recordable attack. In doing so, we additionally distinguish
between required and optional anomalies. A TCP flooding
attack on a single victim, for example, is characterized by a
stochastic anomaly of observed TCP packets and a distribution
anomaly in destination address prefixes—significantly more
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Fig. 3. Modeling of (a) anomalies, (b) large-scale attacks, and (c) anomaly detection methods

packets are sent to the victim’s network than usual. These
are required anomalies. An increase in ICMP destination un-
reachable messages, which often occurs in case of a successful
DDoS attack, could be an optional anomaly.
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Based on all detectable anomalies and actually known attack
characteristics, we defined various attack classes, which unite
attacks closely related to each other. Each recordable attack
is assigned to a certain attack class. The attacks of each
attack class finally are included into an attack hierarchy.
Figure 4 shows such a hierarchy, which is not complete but
easily extensible and very flexible. In summary, the established
attack hierarchy is more general and flexible than implicit
identification and contains coherences between the different
attack classes.

III. ANOMALY-BASED IDENTIFICATION

Existing identification approaches are pointed out in Sec-
tion III-A and their pros and cons regarding attack detection
are discussed. Then, we introduce a generalized identification
system with special respect to flexibility and accurate results
in Section III-B before describing the autonomous detection
processing control in Section III-C.

A. Related Work

Despite the many research activities that have been per-
formed in the field of anomaly and attack detection, currently
no generalized identification system exists, which is easily
extensible and adaptable to heterogeneous environments. As
discussed in Section I existing approaches for anomaly de-
tection and identification are, to the best of our knowledge,
limited or inflexible.

Existing approaches for identification of attacks are based
on different mechanisms: [8] uses a rule-based mechanism,

[7] hierarchical clustering, and [9] a classifier. Classifiers can
be further differentiated into parametric and non-parametric
classifiers. Parametric classifiers, e. g. a Bayes classifier, de-
pend on a stochastic model that provides an a-priori probability
distribution for the classification. Non-parametric classifiers
like the Nearest Neighbor Classifier, on the other hand, must
be configured with a classification model, from which the
necessary probabilities are estimated. In case of clustering,
the hierarchical clustering of [7] or K-Means-Clustering are
just two exemplary mechanisms.

TABLE I
COMPARISON OF DIFFERENT IDENTIFICATION MECHANISMS

pooracceptableacceptablegoodResult accuracy

nonoyesnoStochastic model
necessary

yesyesnoyes
Meta data
necessary

goodacceptablegoodpoorFlexibility

Clustering
Non-parametric

classifier
Parametric
classifier

Rule-based

Table I shows a comparison of all the afore-mentioned
identification mechanisms. Each mechanism is rated in dif-
ferent categories with respect to the suitability for a flexible
and adaptable identification of large-scale attacks. A rule-
based mechanism produces accurate results without need for
learning data or an a-priori stochastic model. It, however,
needs externally specified meta data—the rule set it works
with. Establishing this meta data initially is a time-consuming
task. Furthermore, this mechanism is very inflexible, i. e. poor
results must be expected in case of imperfect anomaly detec-
tion input. Parametric classifiers require a predefined stochastic
model of all concerned entities like regular Internet traffic,
recordable attacks, detectable anomalies, and their coherences.
Such a stochastic model, however, is not constructible due to
the complexity of attack detection in the Internet. Clustering
methods need a-priori learning data and a suitable clustering
metric. Identification of the resulting clusters, however, still
has to be performed manually. The last mechanism, a non-
parametric classifier, does not require learning data or a
stochastic model but some sort of meta data specifying already
known categories. It is flexible and thus, is able to work
with imperfect data since classification is performed by a
distance metric and not by accurate comparison with existing
categories. The results, however, are only estimated and thus,
the result accuracy may vary.

In summary, parametric classifiers and clustering are not us-
able for a generalized attack identification due to the necessary



stochastic model. The other mechanisms, however, also have
drawbacks: a non-parametric classifier does not necessarily
produce accurate results and rule-based mechanisms are rather
inflexible. Therefore, we decided to combine the advantages
of the latter approaches while minimizing their disadvantages.

B. Architecture of our identification system

Figure 5 outlines the architecture of our identification sys-
tem. A rule-based mechanism—that produces accurate results
in case of perfect information—makes the first stage of the
identification system. Due to its lack of flexibility the iden-
tification, however, is likely to fail in case of inaccurate or
imperfect information. In this case, a non-parametric classifier
is applied subsequently. Since the classifier is flexible enough
to work with imperfect detection information, the probability
of a successful identification is very high. Thus, the classifier
reduces the drawbacks of the first stage but may return inac-
curate results. Resource awareness of the whole identification
is ensured by executing the classifier only if really required,
i. e. in case the rule-based mechanism fails.

Rule-based mechanism Classifier

Attack
description

Rule sets, attack hierarchy, 
model of detection methods

Geometric classification
model

System for identification of large-scale attacks

Attack type
identified?

No

Yes

Processing Control

Iterative Identification

Fig. 5. Architecture of the identification system

Another advantage of our two-stage identification—besides
the demand-driven execution of the classifier—is that the
advantages of both mechanisms can be combined while con-
figuration overhead remains manageable. The necessary meta
data for both mechanisms is obtained from our generalized
model and attack hierarchy established in Section II. The
rule-based mechanism derives its meta data from the attack
hierarchy: the rule sets. Each rule set specifies the required
and optional anomalies of a particular attack. The location
within the attack hierarchy and the relation to other attacks
also is included into the specification. The classifier actually
used is a nearest neighbor classifier in combination with a
geometric classification model based on cuboids. The cuboids
representing recordable attacks are also derived from the
generalized model. They primarily are based on the output data
of detection methods and anomalies associated to an attack.

In summary, the identification system requires a-priori meta
data for both mechanisms. This data can be derived from our
generalized model. Thus, the identification is easily extensible,
very flexible and fits well into heterogeneous environments.

C. Autonomous processing control

The identification system has to be resource-saving and
adaptable to its particular environment, especially if applied

within the network. Therefore, we propose a processing con-
trol mechanism for the whole attack detection and identifica-
tion system. Such a control mechanism only is suitable for
attack detection if no manual interaction is required, i. e. it
must be autonomous and adaptable to changing requirements.

Our autonomous processing control is integrated into the
rule-based identification step. Depending on the modeled
information about anomaly detection methods—preconditions,
input, configuration, and output data—the processing control
determines all initial methods. These can be executed all
the time. If there are not enough resources to execute all
initial methods, the processing control has to decide which
methods actually to use. This decision can e. g. be based on
preconditions like resource consumption, detection granularity,
or benefit. An identification process is started as soon as
an initial anomaly is detected. In this case, the conditional
methods are checked for runnable methods with newly ful-
filled preconditions or newly available input data. If multiple
conditional methods are runnable, resource availability has to
be considered before starting them and methods e. g. have to
be executed consecutively. More sophisticated algorithms for
the execution in case of low resources are imaginable but out
of scope in this paper. This processing is performed iteratively
until no additional methods become runnable.

The processing control ensures adaptability to available
resources and dependencies between anomaly detection meth-
ods. In addition, it is possible e. g. to execute only anomaly
detection methods that promise additional benefit. Specific
methods that help in detecting certain worm characteristics,
for example, can be disregarded if the detected anomalies
indicate a DDoS attack. The necessary coherences for such
a decision can be derived from the rule sets, which in turn
are derived from the attack hierarchy of our generalized
model. In summary, no manual interaction is required during
detection and identification once the system has been set up.
Establishing the generalized model and deriving the necessary
meta data, however, still requires manual work.

IV. IMPLEMENTATION

This section presents the implementation as well as a simu-
lative evaluation of the identification system. The simulations
are based on the discrete event simulator OMNeT++ [16] and
its Internet extension—the INET Framework [17].

Based on the generalized model and the attack hierarchy
of Section II we first derived the rule sets for the rule-based
mechanism and specified them using XML. Currently, our
identification provides exemplary rule sets for most attacks of
the subtree DoS attack and for the complete subtree Worm
propagation of Figure 4. Furthermore, the four attributes
modeling anomaly detection methods were specified based on
XML for the currently used methods: a stochastic anomaly,
an address distribution anomaly, and transport layer protocol
anomalies [10]. This data is required by the processing control.

In order to actually implement the processing control and
identification, we build on the attack detection framework
Distack [18], which is easily extensible due to its modularity.
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Fig. 6. Identification results of (a) DDoS and (b) worm propagation simulations

The afore-mentioned anomaly detection methods are already
implemented for Distack. The processing control of Distack,
however, is static and manually configured so far.

First, we implemented a new module called coordinator.
This module reads the XML specifications, starts the initial
methods, and implements the autonomous processing control.
The second module we had to implement was the geometric
classifier. In addition, some new messages for the internal
communication between modules and new classes for man-
agement of the specification data and rule sets were added.

In case a detection process has ended, a rule-based iden-
tification is started. If this identification fails the classifier is
activated. Therefore, the output data of all detected anomalies
first have to be normalized to a fixed value interval—0 to
100 in our case. This is necessary to support heterogeneity of
detection systems and anomaly detection methods. Then, this
output data—representing a new cuboid in the n-dimensional
classification space—is used as input for the classification pro-
cess. Based on a specified nearest neighbor distance, e. g. the
Euclidean distance, the nearest reference cuboid is calculated
and the corresponding attack is returned as classification result.
Unknown attacks can be identified by a calculated distance
that exceeds a predefined threshold. In this case a manual
classification and identification still is necessary. Finally, an
attack description is generated (see Figure 5) that can be
used e. g. for collaboration of distributed detection systems
or initiating countermeasures.

A. Simulation

We decided to evaluate our identification system by means
of simulations since testbeds—especially in case of large-
scale attacks—are costly, mostly limited in size, and time-
consuming to maintain. Furthermore, Ringberg et al. [19]
recently pointed out today’s lack and the need for simula-
tion in case of anomaly-based attack detection. In addition,
simulations are more suitable than real environments in some
aspects due to their reproducibility and lack of side effects
biasing the results.

We attached great importance on using simulation envi-
ronments as realistic as possible by relying on ReaSE [20].
ReaSE is able to construct hierarchical Internet-like topologies
and to automatically generate background traffic that shows
self-similar behavior. In addition, generation of attack traffic

relies on the mechanisms of real attack tools—the Tribe Flood
Network in case of DDoS attacks and Code Red I in case of
worm propagations.

For the simulative evaluation we generated a topology
consisting of about 50 000 nodes in total and added a single
anomaly detection and identification system. We conducted
35 simulations of DDoS attacks on a single victim host using
376 malicious zombie system while placing the detection
system at the victim network’s edge. 35 additional simulations
of DDoS attacks used 79 zombies while placing the detection
system at a router in the core network. A TCP SYN flooding
attack was launched against port 80 of a webserver in 20 of
these simulations. Since the webserver was able to accept only
a limited number of connection attempts per port, its service fi-
nally was disrupted. These simulations thereby varied in attack
volume, start time of the attack, and victim webserver. The
further 50 simulations additionally varied the type of attack:
flooding based on TCP RST, TCP SYN/ACK, UDP, or ICMP
packets instead of TCP SYN packets. Finally, 20 simulations
of a UDP worm propagation with varying probing volumes
and locations of initially infected systems were conducted.

At simulation startup, the identification system starts the
initial method of the detection system, which scans for a
stochastic anomaly, i. e. a sudden increase in the observed
traffic. As soon as a such an anomaly is detected the processing
control iteratively checks for runnable conditional methods and
starts them. Currently available conditional methods scan for
IP address distribution and transport layer protocol anomalies.
Having finished the iterative anomaly detection process, the
rule-based identification is applied based on the detection
result and the specified rule sets. The geometric classifier is
only used on demand, i. e. if the rule-based identification fails.

Figure 6 organizes the simulation results into different cat-
egories: accurate means that exactly that attack was identified
that actually was simulated. In case of parent a parent class
of the accurate attack was identified according to our attack
hierarchy (see Figure 4). If an identification resulted in a
wrong attack type this is marked with incorrect. Finally, none
means that no identification took place at all.

From the simulation results we learned that correctness and
identification accuracy heavily depends on the actual anomaly
detection result. In case of high-volume DDoS attacks (black)
with attackers sending more than 75 packets/s each, the rule-



based stage of the identification returned an accurate or at
least a correct result. The inaccurate results occured in case
only a subset of the anomalies were detected and therefore,
the rule-based system was only able to identify a parent
class of the actual attack. The large number of accurately
identified medium- (grey, 20–50 packets/s) and low-volume
attacks (white, ≤ 15 packets/s) is caused mainly by ICMP
and UDP attacks since background traffic of these aggregates
is much lower than in case of TCP. Thus, correct detection is
easier for such attacks even in case of medium or low volume.
In case of TCP attacks, however, often no identification took
place since no anomalies were detected by the detection
system at all. Thus, no identification process was started.
Lastly, the incorrectly identified DDoS attacks were caused by
the fact that the anomaly detection resulted in false positive
errors. In such situations the identification returned a correct
attack type regarding the anomalies detected—regarding the
network situation, however, the identified attack was wrong
due to the false positives. In case of worm propagations
frequent false positives occurred for medium- and high-volume
attacks since probing traffic seemed to be directed to a single
address prefix—which is typical for DDoS attacks—due to the
simple probing mechanism used.

In only 3 simulations the rule-based mechanism failed to
identify an attack. In these cases, the classifier was activated
subsequently and identified at least one ongoing DDoS attack
accurately. The low number of situations the classifier is
started is caused by the fact that the detection system we
built on provides only a small number of dimensions, i. e. a
small number of anomaly detection methods and thus, a small
number of output parameters. If the detection system, however,
will be extended by additional detection methods in the future
and the rule sets consider additional attack types, we are
confident that the classifier will be necessary and compensate
the problems of the inflexible rule-based mechanism.

V. CONCLUSION AND OUTLOOK

This paper presented an identification system for large-
scale attacks like DDoS attacks or worm propagations. Basis
of the identification are the locally detected anomalies. Such
an identification of attack type and characteristics facilitates
collaboration of distributed detection systems in heterogeneous
environments and may simplify other tasks like taking coun-
termeasures. In addition, the proposed autonomous processing
control of detection and identification ensures adaptability to
available resources and anomaly detection methods as well
as to changing attack situations. In order to ensure flexi-
bility and extensibility to future requirements and detection
methods, both processing control and identification build on
a generalized modeling of the entities participating in attack
detection. The proposed anomaly-based attack identification
consists of a rule-based mechanism and a subsequent demand-
driven geometric classifier. The simulative evaluation showed
that the identification is able to return accurate results but to
a certain degree depends on the correctness and accuracy of
the preceding anomaly detection.

Future work should examine if it is possible to extend
the classification by self-learning methods that autonomously
improve the reference cuboids of the classifier and adapt
the classification to its actual environment. This could be a
promising approach primarily to handle unknown attacks. Fur-
thermore, an evaluation and comparison of the identification in
terms of efficiency and accuracy should be performed. Finally,
integration of further data, e. g. provided by defense-in-depth
solutions, into the identification process should be considered
in order to improve identification accuracy.
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[10] T. Gamer, M. Schöller, and R. Bless, “An extensible and flexible System
for Network Anomaly Detection,” in Proc. of Autonomic Networking,
Sep. 2006, pp. 97–108.

[11] G. Carl, G. Kesidis, R. Brooks, and S. Rai, “Denial-of-Service Attack-
Detection Techniques,” IEEE Internet Computing, vol. 10, no. 1, pp.
82–89, Jan. 2006.

[12] C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault
detection: a statistical anomaly approach,” IEEE Communications Mag-
azine, vol. 40, no. 10, pp. 76–82, Oct. 2002.

[13] C. Douligeris and A. Mitrokotsa, “DDoS Attacks and Defense Mecha-
nisms: Classification and State-of-the-Art,” Computer Networks, vol. 44,
no. 5, pp. 643–666, Apr. 2004.

[14] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for
classifying denial of service attacks,” Proc. of ACM SIGCOMM, pp.
99–110, Aug. 2003.

[15] H. Wang, D. Zhang, and K. Shin, “Detecting syn flooding attacks,” in
Proc. of IEEE Infocom, Jun. 2002, pp. 1530–1539.

[16] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in Proc.
of the European Simulation Multiconference, Jun. 2001, pp. 319–324.

[17] A. Varga, “INET Framework,” http://www.omnetpp.org/pmwiki/index.
php?n=Main.INETFramework, Sep. 2007.

[18] T. Gamer, C. P. Mayer, and M. Zitterbart, “Distack—A Framework
for Anomaly-based Large-scale Attack Detection,” in Proc. of 2nd
SECURWARE, Aug. 2008, pp. 34–40.

[19] H. Ringberg, M. Roughan, and J. Rexford, “The Need for Simulation in
Evaluating Anomaly Detectors,” SIGCOMM Computer Communication
Review, vol. 38, no. 1, pp. 55–59, Jan. 2008.

[20] T. Gamer and M. Scharf, “Realistic Simulation Environments for IP-
based Networks,” in Dig. Proc. of the OMNeT++ Workshop, Mar. 2008.


	Introduction
	Requirements

	Modeling of Large-Scale Attacks and Detection Entities
	Anomaly-based Identification
	Related Work
	Architecture of our identification system
	Autonomous processing control

	Implementation
	Simulation

	Conclusion and Outlook
	References

