
Integration of a GIST implementation into OMNeT++

Roland Bless
Institute of Telematics

Karlsruhe Institute of Technology
Zirkel 2, D–76128 Karlsruhe, Germany

bless@kit.edu

Martin Röhricht
Institute of Telematics

Karlsruhe Institute of Technology
Zirkel 2, D–76128 Karlsruhe, Germany

roehricht@kit.edu

ABSTRACT

The General Internet Signaling Transport (GIST) protocol
was specified by the IETF in order to provide a generic trans-
port protocol for signaling messages. A group at the Insti-
tute of Telematics implemented the GIST protocol and eval-
uated it already in smaller testbed setups. An evaluation of
GIST in large-scale scenarios can, however, only be accom-
plished by using a simulation framework. In this paper we
describe how the existing Linux-based and multi-threaded
NSIS-ka implementation was ported to the OMNeT++ sim-
ulation framework. First we provide an analysis of the dif-
ferent design principles used and then describe related chal-
lenges. Then we describe a methodology for integrating an
existing real protocol implementation into OMNeT++. The
feasibility of the chosen approach is finally demonstrated by
a set of evaluations.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working—Standards; I.6 [Simulation and Modeling]: Mis-
cellaneous

General Terms

Measurement, Standardization

Keywords

OMNeT++, Simulation, NSIS, GIST

1. INTRODUCTION
The General Internet Signaling Transport (GIST) proto-

col was introduced by the Internet Engineering Task Force
(IETF) as a generic transport protocol for signaling mes-
sages within the Next Steps in Signaling (NSIS) framework.
GIST was designed to be used by a variety of different signal-
ing applications, e.g., for performing resource reservations to
provide Quality-of-Service or for configuring NAT-Gateways

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

and Firewalls. All specified parts of the NSIS framework
were implemented by the Institute of Telematics within the
last couple of years. The C++-based implementation was
subject to different interoperability tests and was evaluated
in testbeds as well as within Internet-wide scenarios using
Linux and standard PC hardware.

However, a detailed evaluation of network protocols in se-
tups with several thousands hosts and within different sets
of topologies cannot easily be accomplished by using real
OS-based implementations running on real hardware due
to cost and management constraints. Instead, simulation

frameworks are usually used to test protocol implementa-
tions in scenarios with a large number of interacting hosts.
In order to test and evaluate new network protocols, an im-
plementation is typically designed for the simulation frame-
work itself before an implementation for real hardware is
subsequently carried out. OMNeT++ [7] is a generic dis-
crete event simulation framework that is widely used for
evaluation of network protocols.

In order to evaluate GIST also in large-scale setups with
hundreds to thousands of hosts, the existing protocol imple-
mentation had to be ported to the OMNeT++ simulation
framework. Rather than writing a new implementation for
the simulation environment from scratch, we wanted to re-
use as much of the existing code in an unmodified manner.
The existing software is, however, modularized and heavily
uses Posix threads as well as a self-written Linux-specific
protocol library which offers transport services, timers, and
useful data structures. The different design principles used
by the GIST implementation and OMNeT++ pose a set of
different challenges. In this paper we give a short intro-
duction into the background and related work in Section 2.
A detailed analysis of both implementation’s relevant parts
and the proposed methodology to resolve arising challenges
are discussed in Section 3. In Section 4 we present some
performance evaluations of the resulting integration before
we conclude in Section 5.

2. BACKGROUND AND RELATED WORK
The Next Steps in Signaling (NSIS) framework [1] was

introduced by the IETF in order to provide a generic sig-
naling protocol suite in IP-based networks and in response
to some deficiencies of the already present Resource Reser-
vation Protocol (RSVP). Hence, NSIS follows a two-layered
approach by separating the signaling application’s logic from
the signaling message’s transport. The lower layer, called
NSIS Transport Layer Protocol (NTLP), is responsible for
routing and transport of signaling messages and makes use

of underlying transport protocols, such as UDP, TCP, TCP
with TLS or SCTP. The GIST protocol [6] fulfills the re-
quirements of an NTLP.

An implementation of the GIST protocol specification was
developed at the Institute of Telematics [2] and was eval-
uated by a couple of interoperability tests against various
other GIST implementations. The NSIS-ka implementation
of GIST currently comprises about 34,000 lines of code which
are mostly C++-based.

Porting existing implementations into simulation environ-
ments such as OMNeT++ was already subject of earlier
work. A prominent example was the integration of FreeBSD’s
TCP/IP stack into the simulation environment [3, 5]. Some
of the problems within this work were similar to the ones
we encountered by porting GIST to OMNeT++ such as the
scope of variables which are declared globally in FreeBSD’s
implementation whereas multiple instances of these vari-
ables must be used for the simulation of several hosts in par-
allel. However, not all of the proposed paradigms were appli-
cable for our work. For instance, in contrast to FreeBSD’s
C-based implementation which is single-threaded, GIST’s
C++-based implementation heavily uses Posix threads. Fur-
thermore, the existing GIST implementation could not be
encapsulated into one single OMNeT++ SimpleModule.

Different aspects of integrating real-world applications into
OMNeT++ are examined in [4]. In OMNeT++ three dif-
ferent approaches towards an integration of existing applica-
tions are conceptually provided: socket connections, source
code integration, and shared library integration. Challenges
concerning such an integration—e.g., handling application
threads in a discrete event simulator like OMNeT++ or
transforming application-specific timer mechanisms—are out-
lined in this work. However, the proposed solutions are pri-
marily exemplified for the shared library approach and are
therefore only applicable in parts to our approach where we
aim at integrating the source code of an existing implemen-
tation into OMNeT++ (version 4.0).

3. INTEGRATING GIST INTO OMNET++
According to the design of the NSIS framework the ex-

isting NSIS-ka implementation was separated into different
components, a protocol library (Protlib), the GIST layer,
and each NSLP application amongst others. In the context
of this paper we focus on the GIST implementation and
the one for the protocol library. Each of these components
is subsequently separated into NSIS modules, e.g., a timer
module or a state module (c.f., Figure 1). The C++-based
implementation follows a multi-threaded approach that is
technically realized by Posix threads so that each NSIS
module is subclassed by a Thread class and can comprise
several running threads. Thread processing may be either
implicitly controlled by the scheduler or one can explicitly
synchronize them by letting them wait on specific condition
variables. Concurrent access to shared data structures must
be controlled by means of locks and mutexes. Communica-
tion between threads is achieved by using FastQueues, that
are shared memory message queues using mutexes and con-
dition variables to resolve concurrent access. A thread typi-
cally listens to one or more assigned FastQueues waiting for
incoming messages sent by other threads or own messages.
An NSIS module is initialized by a class constructor which
retrieves its necessary parameters via a subclassed Thread-

Param data structure.

OMNeT++ is a discrete event simulation framework that
models message senders and receivers as subclasses of cSim-
pleModules. All internal messages are inserted into a Future

Event Set and upon reception of a message the receiver’s
handleMessage() function is called by the simulation kernel.
The constructor used to instantiate subclassed cSimpleMod-

ules must be empty. Therefore, initialization parameters
cannot be passed via the constructor itself and an initial-

ize() function must be used instead which retrieves the pa-
rameters usually via the omnetpp.ini configuration file or
the module’s specific ned file.

The relevant differences between the existing NSIS-ka im-
plementation and the OMNeT++ simulation environment
outlined in this section are summarized in Table 1.

NSIS-ka OMNeT++

Active entity Thread SimpleModule
Processing
Mode

Parallel Sequential/non-
preemptive

Scheduling Indirectly via thread
conditions and syn-
chronization

Directly on message
arrival

Event signaling Condition variables Messages

Table 1: Comparison of the NSIS-ka implementation

and the OMNeT++ simulation environment

Regarding the integration of NSIS-ka’s GIST implemen-
tation into the OMNeT++ simulation environment, the dif-
ferent mechanisms being used lead to a diverse set of chal-
lenges. An important requirement was to keep as much as
possible of the existing protocol implementation unmodified
in order to allow future versions of the implementation to
make use of this extension as well without having to perform
considerable adaptations.

3.1 Modelling of cSimpleModules
An important design decision was related to the ques-

tion which part of the existing implementation had to be
modelled by a cSimpleModule. Modelling Posix threads as
cSimpleModules is advantageous regarding the logical coher-
ence of entities receiving and emitting messages. However,
in order to simulate conditions that trigger Posix threads
an additional message must be provided. Furthermore, this
design does not result in an efficiency gain as the cSimple-
Modules are always processed sequentially by the simulation
kernel and the high number of objects imposes a much higher
memory usage which may lead to scalability problems.

For these reasons, we decided to model an entire NSIS
module as a cSimpleModule. Following this approach several
active entities, i.e., Posix threads, are bundled in one sin-
gle cSimpleModule. The OMNeT-specific handleMessage()

function is then used to realize the NSIS module’s specific
logic. Conditions to synchronize thread executions are sig-
naled by boolean variables instead of using additional mes-
sages. This approach proves especially advantageous regard-
ing the smaller amount of necessary messages and objects,
and, finally results in a smaller memory footprint.

3.2 Message Handling
The GIST and Protlib implementations both use so-called

FastQueues in which messages are managed whereas OM-
NeT++ uses a Future Event Set (FES) where all unpro-

cessed messages are stored. As the FES must be used any-
way in order to activate the handleMessage() functions, we
decided to insert messages intended for a FastQueue directly
into the FES. In the existing implementation, message re-
ception is performed by a so-called dequeue_timedwait()

function call which blocks in case the FastQueue is cur-
rently empty or until a specific timeout occurred, respec-
tively. This, on the other hand, leads to different points
in time between the function call and the function’s return
which is especially problematic for the handleMessage()

function that is processed at exactly one point in time.
This issue could be resolved by code refactoring where

separate functions were introduced for the handling of ar-
riving messages and timeouts, respectively. For the existing
implementation this is just another level of indirection, but
by following this approach the simulation can call these new
methods directly via its handleMessage() function without
the need to make use of thread-specific behavior.

3.3 Class Hierarchy and Initialization of Mod-
ules

In order to integrate an implementation into OMNeT++
some requirements with regard to the class inheritance hi-
erarchy must be fulfilled. Firstly, all modules must be sub-
classed by the cSimpleModule class. Furthermore, the sim-
ulation kernel expects the SimpleModules to be used with
an empty constructor. This implies that initialization data
cannot simply be passed to the constructor.

The requirement to integrate the existing code seamlessly
leads to the constraint of preserving the names of functions
and variables as much as possible. Therefore, the originating
inheritance hierarchy of the existing implementation must be
preserved, too. The initialization of modules entails some
conceptual problems. For instance, OMNeT++-specific pa-
rameters are accessible only once the OMNeT++ modules
are constructed, i.e., data is not accessible within the Simple-

Module’s constructor but instead only upon the invocation of
the initialize() method. In order to make OMNeT’s ini-
tialization data accessible by NSIS-ka’s classes, we decided
to allocate dedicated memory space that could be later ini-
tialized by the initialize() function.

3.4 Simulating Multiple Hosts
The simulation of multiple logical hosts requires each sin-

gle host to be clearly identifiable in order to access and ma-
nipulate data of one particular host. As mentioned earlier
each host consists of several SimpleModules which are encap-
sulated by a CompoundModule as depicted in Figure 1.

Some of the data provided by the existing implementation
was declared in a global range like the queue manager. The
simulation, on the other hand, necessitates this data to be
replicated for each single host, meaning that each host must
be identifiable by a unique NsisId. In this case the NsisId

is used by the simulation environment beforehand to iden-
tify the particular host whose data is to be accessed. How-
ever, this ID cannot simply be used as a CompoundModules
parameter as each of OMNeT’s parameters—and therefore
also the NsisId—is only accessible once the initialize()

method is accessible but not within the CompoundModule’s
constructor itself.

We decided to utilize OMNeT’s way of module initializa-
tion where a ModuleId is provided according to the order in
which all modules are initialized (following a breadth-first

Host
Compound Module

TimerModuleStateModule

SignalingModule

TPoverSCTP

TPoverTLS_TCPTPoverTCP

TPoverUDP TPqueryEncap

InitModule_mod
Host

Compound Module

TimerModuleStateModule

SignalingModule

TPoverSCTP

TPoverTLS_TCPTPoverTCP

TPoverUDP TPqueryEncap

InitModule_mod

FinishModule_mod
Already existing GIST modules

New OMNeT-specific modules

Already existing Protlib modules

Figure 1: Modules being used by the NSIS-ka im-

plementation and necessary module extensions for

an integration into OMNeT++

search in the module’s hierarchy tree). We introduced a
dedicated OMNeT++ module (called init_module) which
must be present at the very beginning of each Compound-

Module within the NED file in order to be loaded prior to
all other modules. A ModuleManager acts like a singleton
for the entire simulation, increments an internal counter,
and assigns the host’s specific NsisId to the corresponding
CompoundModule. This approach allows then for a seamless
integration of the existing implementation into OMNeT++
as none of the existing public interfaces had to be changed.

4. EVALUATION
The resulting integration of the NSIS-ka implementation

into OMNeT++ was evaluated by different test cases. We
simulated a varying number of hosts with either one or two
GIST connections per host. In each scenario a GIST connec-
tion is established by GIST’s three-way handshake (Query,
Response, and Confirm) and then used for ten subsequent
Data messages. After that, periodic refresh messages are
exchanged along the data path before a connection is torn
down upon the expiration of a soft state timer.

The tests were performed on an Intel Core2 Duo P8700
CPU with 2.53GHz and 3GB of RAM, running in 32-bit
mode on a Linux Kernel 2.6.31 with GCC 4.4.1 and libc6
version 2.10.1. OMNeT++ was used in version 4.0 in Cmd-
Env mode and OppBSD in a developer version of the up-
coming 4.0 release. The debug logging output was disabled
in the NSIS-ka software.

4.1 Memory Usage
Figure 2 depicts the memory usage for a varying number

of hosts as measured by the ps utility. The data reflects the
value of the Data Resident Set Size (DRS), i.e., the data
segment of the running simulation.

We performed measurements for a Send Direct primitive,
where messages are directly exchanged between peers with-
out any lower layer interaction, and by using OppBSD with a
complete TCP/IP stack underneath. Using OppBSD promises
for more realistic simulation results and proves especially ad-
vantageous for obtaining tcpdump pcap files that can be used
for an offline analysis afterwards.

We observe a higher memory footprint by using OppBSD
which is a direct consequence of the socket memory buffers
that are allocated by FreeBSD’s TCP/IP stack. However,

M
e

m
o

ry
 U

s
a

g
e

 [
K

B
]

Number of Hosts

OppBSD - One connection per host
OppBSD - Two connections per host

Send Direct - One connection per host
Send Direct - Two connections per host

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 500 1000 1500 2000 2500

Figure 2: Evaluation of memory consumption

we obtain a linear growth rate showing that the memory
consumption per host is constant. Table 2 summarizes some
measurement values for a specific number of hosts.

Using OppBSD Using Send Direct
Hosts One

Conn.
Two
Conn.

One
Conn.

Two
Conn.

10 18 825 18 961 18 634 18 638
100 36 653 36 801 21 366 21 634

1 000 276 485 283 077 48 702 50 646
10 000 751 853 758 469 324 194 345 994

Table 2: Memory consumption for simulations with

a varying number of hosts in KB

4.2 Runtime Performance
Furthermore, we evaluated the simulation’s runtime per-

formance for a varying number of hosts. We used setups with
hosts participating in one or two connections and by either
using the Send Direct primitive or by using the OppBSD
TCP/IP stack, respectively.

In Figure 3 the resulting performance evaluation is shown
for a varying number of hosts, ranging from ten simulated
hosts up to 2 500 simulated hosts. We simulated 130 seconds
of interaction and measured the totally elapsed time of the
simulation’s run.

T
im

e
 [

s
]

Number of Hosts

OppBSD - One connection per host
OppBSD - Two connections per host

Send Direct - One connection per host
Send Direct - Two connections per host

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500

Figure 3: Evaluation of runtime performance

Without using the OppBSD TCP/IP stack underneath we
can simulate a 130 seconds run with far more than 10 000
hosts, whereas 130 seconds are already simulated in realtime

by simulating 3 500 hosts with one connection and by using
the OppBSD TCP/IP stack (see Table 3).

Using OppBSD Using Send Direct
Hosts One

Conn.
Two
Conn.

One
Conn.

Two
Conn.

10 0.030 0.037 0.012 0.011
100 0.572 0.703 0.103 0.121

1 000 20.450 30.168 1.164 1.482
3 000 125.684 221.646 3.723 4.600

Table 3: Performance evaluation of 130 simulation

seconds with a varying number of hosts in seconds

5. CONCLUSIONS
In this work we presented the integration of an existing im-

plementation of a protocol framework into OMNeT++. We
discussed emerging challenges and outlined different design
decisions to resolve these issues. By following this approach
the NSIS-ka’s GIST implementation can now also be used
with an underlying OppBSD TCP/IP stack yielding more
realistic simulations. Evaluations of the memory footprint
and runtime performance show the feasibility of the chosen
approach. Future work would comprise the integration of
the existing code of the NSIS-ka’s NSLP protocols, in order
to perform comprehensive evaluations for Quality-of-Service
signaling, i.e., QoS NSLP, in a large scale, too.

6. ACKNOWLEDGMENTS
We thank Stefan Hartte for his valuable help in elaborat-

ing the concepts of this work and his major contributions to
the resulting implementation.

7. REFERENCES
[1] X. Fu, H. Schulzrinne, A. Bader, D. Hogrefe,

C. Kappler, G. Karagiannis, H. Tschofenig, and S. V.
den Bosch. NSIS: A New Extensible IP Signaling
Protocol Suite. Communications Magazine, IEEE,
43(10):133–141, October 2005.

[2] Institute of Telematics. NSIS-ka – A free C++
implementation of NSIS protocols, February 2010.
http://nsis-ka.org/.

[3] Institute of Telematics. OppBSD – A FreeBSD Network
Stack integrated into OMNeT++, February 2010.
https://projekte.tm.uka.de/trac/OppBSD/.

[4] C. P. Mayer and T. Gamer. Integrating real world
applications into OMNeT++. Telematics Technical
Report TM-2008-2, Institute of Telematics, Universität
Karlsruhe (TH), February 2008.

[5] R. Bless and M. Doll. Integration of the FreeBSD
TCP/IP-stack into the discrete event simulator
OMNet++. In WSC ’04: Proceedings of the 36th

conference on Winter simulation, pages 1556–1561.
Winter Simulation Conference, December 2004.

[6] H. Schulzrinne and R. Hancock. GIST: General
Internet Signalling Transport.
http://tools.ietf.org/id/draft-ietf-nsis-ntlp,
June 2009. Internet Draft draft-ietf-nsis-ntlp-20.

[7] A. Varga and R. Hornig. An Overview of the
OMNeT++ Simulation Environment. In Simutools ’08,
pages 1–10, ICST, Brussels, Belgium, 2008.

