
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Institute of Telematics, Department of Computer Science

www.kit.edu

Integration of a GIST implementation into OMNeT++
Roland Bless and Martin Röhricht

Institute of Telematics
Department of Computer Science

1 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Evaluation of Network Protocols

Simulation
Investigation of scalability aspects
Study general behavior while varying parameters

Implementation
Allows for performance investigations
Consideration of real-world aspects

Possible way of validating protocols
Prototypical implementation for network simulator
Evaluation of implementation by simulations
Port implementation to work on real hardware

Institute of Telematics
Department of Computer Science

2 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Integration of an existing implementation into OMNeT++

Allow for protocol evaluations in large-scale scenarios

Evaluation of existing implementation instead of model

NSIS-ka
Implementation of the Next Steps in Signaling Protocols
Tested within testbeds and across the Internet

Keep as much as possible of the existing implementation unmodified
Allow future versions of the implementation to be re-integrated without
major adaptations

Institute of Telematics
Department of Computer Science

3 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Comparison Study

NSIS-ka OMNeT++

Active entity Thread SimpleModule

Processing Mode Parallel Sequential/non-
preemptive

Scheduling Indirectly via thread
conditions and
synchronization

Directly on message
arrival

Event signaling Condition variables Messages

Comparison of NSIS-ka implementation with OMNeT++ simulation
environment

Institute of Telematics
Department of Computer Science

4 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Design Decisions I

Modeling of cSimpleModules
Model POSIX threads as cSimpleModules?

Pro – Logical coherence regarding messaging related entities
Con – No performance gain, much higher memory usage

Model entire NSIS module as cSimpleModule
handleMessage() realizes specific module’s logic
Thread synchronization realized by means of Boolean variables

No additional messages necessary

Message handling
Insert messages for FastQueue directly into Future Event Set
Separate functions for message arrival and timeout handling
in NSIS-ka implementation

handleInternalMessage() and handleTimeout()

Allows handleMessage() to call handleInternalMessage() directly upon
message arrival

Institute of Telematics
Department of Computer Science

5 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Design Decisions II

Class hierarchy and module initialization
All modules must be subclassed by cSimpleModules

Empty constructor mandatory
initialization data cannot be passed to constructor

Introduce …module_mod class with empty constructor
for each NSIS module

Data is not accessible via cSimpleModule constructor
Only within initialize() method
Allocate dedicated memory to superclass

Initialization within subclass by initialize() function

Simulation of multiple hosts
Encapsulate modules of a host in CompoundModule

Each host must be clearly identifiable by unique NsisId
Introduce ModuleManager for initialization of each CompoundModule

Use dedicated init_module at beginning of each CompoundModule (i.e. host)

cSimpleModule

Thread

Statemodule

Statemodule_mod

Institute of Telematics
Department of Computer Science

6 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Necessary Module Extensions

Host
Compound Module

TimerModuleStateModule

SignalingModule

TPoverSCTP

TPoverTLS_TCPTPoverTCP

TPoverUDP TPqueryEncap

InitModule_mod
Host

Compound Module

TimerModuleStateModule

SignalingModule

TPoverSCTP

TPoverTLS_TCPTPoverTCP

TPoverUDP TPqueryEncap

InitModule_mod

FinishModule_mod
Already existing GIST modules

New OMNeT-specific modules

Already existing Protlib modules

Institute of Telematics
Department of Computer Science

7 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Evaluations

Evaluation of Integration into OMNeT++
Not an evaluation of the GIST protocol implementation

Evaluated by two different communication models
Abstract point-to-point communication model (“Send_Direct”)
Real underlying FreeBSD TCP/IP Stack (“OppBSD”)

Promises for more realistic simulation results
Allows analysis and validation of simulation results
by means of tcpdump packet captures

One or two connections per host
GIST state setup
10 consecutive Data messages
Tested for a varying number of hosts

Querying
Node

Responding
Node

Query
Response
Confirm

Data

Data

GIST
State
Setup

…

Institute of Telematics
Department of Computer Science

8 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Evaluation Results – Memory Consumption

Using OppBSD Using Send_Direct

Hosts One
Conn.

Two
Conn.

One
Conn.

Two
Conn.

10 18,825 18,961 18,634 18,638

100 36,653 36,801 21,366 21,634

1,000 276,485 283,077 48,702 50,646

10,000 751,853 758,469 324,194 345,994

Measurements for Data Resident Set Size (DRS)
Data segment of running application

Linear growth rate
Constant memory consumption per host

M
em

or
y

U
sa

ge
 [K

B
]

Number of Hosts

OppBSD - One connection per host
OppBSD - Two connections per host

Send Direct - One connection per host
Send Direct - Two connections per host

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 500 1000 1500 2000 2500

OppBSD causes much higher
memory footprint due to allocated
socket memory buffers

Institute of Telematics
Department of Computer Science

9 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Evaluation Results – Runtime Performance

Simulation of 130 seconds of protocol interaction

Using OppBSD Using Send_Direct

Hosts One
Conn.

Two
Conn.

One
Conn.

Two
Conn.

10 0.03 0.03 0.01 0.01

100 0.57 0.70 0.10 0.12

1,000 20.45 30.16 1.16 1.48

3,000 125.68 221.64 3.72 4.60

130 seconds simulated in real-time
by simulating 3,500 hosts using
OppBSD

Ti
m

e
[s

]

Number of Hosts

OppBSD - One connection per host
OppBSD - Two connections per host

Send Direct - One connection per host
Send Direct - Two connections per host

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500

Institute of Telematics
Department of Computer Science

10 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Conclusion and Outlook

Integration of existing implementation into simulation framework
Implementation already tested with real hardware
Simulation environment allows for greater flexibility and large-scale
evaluations

Use of OppBSD’s TCP/IP stack promises realistic simulations
Possibility of obtaining tcpdump pcap files
especially advantageous for offline analysis

Future versions of the protocol implementation are directly integrated

Ongoing work
Integration of NSLP implementations into OMNeT++

NAT/FW NSLP
QoS NSLP

Use OMNeT++ topology generator ReaSE
for large-scale protocol evaluations

Institute of Telematics
Department of Computer Science

11 19.03.2010 Roland Bless and Martin Röhricht - Integration of a GIST Implementation into
OMNeT++

Thank you for your attention

Questions?

	Foliennummer 1
	Evaluation of Network Protocols
	Integration of an existing implementation into OMNeT++
	Comparison Study
	Design Decisions I
	Design Decisions II
	Necessary Module Extensions
	Evaluations
	Evaluation Results – Memory Consumption
	Evaluation Results – Runtime Performance
	Conclusion and Outlook
	Foliennummer 12

