
Energy-efficient Management of Wireless Sensor
Networks

Jochen Furthmüller, Stephan Kessler, and Oliver P. Waldhorst
Telematics Institute

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany

Email: furthmueller|waldhorst@kit.edu, stephan.kessler@student.kit.edu

Abstract—Managing wireless sensor networks in an energy-
efficient manner is no mean feat. Management requests and
responses create additional traffic in addition to the data is-
suing from the network’s actual sensing application. Effective
management therefore requires balancing the need for detailed
oversight of the network against the energy consumption of the
management system itself. This paper explores whether sending
the management data and the sensing data together rather than
separately can reduce the management system’s energy footprint.
From the results of our experiment using BMAC and DYMO on
MICAz motes running on TinyOS, we find that our approach
does indeed substantially reduce the communication costs of the
management system. We discuss different models for cooperation
between the management system and the sensing application and
estimate the potential trade-off between the number of packet
transmissions and the delay of management data. To put the theo-
retical results into practice, we present a management framework
for monitoring wireless sensor networks that is independent of the
actual sensing application. This framework allows fine-grained
control over the latency tolerated for management requests for
the sake of reduced energy consumption. Measurements based on
a prototype implementation of the framework in an experimental
setup show that up to 61% of the energy previously needed for
management requests can be saved.

I. INTRODUCTION

The topic of wireless sensor network management has been
rising steadily on research agendas. Effective management
is critical because even well-designed and properly imple-
mented applications can fail at runtime due to the inherent
characteristics of these networks. A serious runtime failure
occurred during a well-documented experiment conducted in
the Sonoma redwood forest [8], [11]: In this case, a startling
52 of the 80 deployed sensor nodes did not deliver any
results. The malfunctioning was not detected until the end of
the experiment, however, because there was no management
system available. Unfortunately, such failures of single nodes
or inter-node communication are all too common, because
resources (like energy and communication bandwidth) are
scarce and redundancy and reliable protocols are expensive.
Thus, there is obviously an urgent need for a system that
allows the operators of wireless sensor networks to set relevant
parameters and ensure that everything is functioning smoothly.

Generally speaking, management functions can either be
integrated into the sensor application itself or set up as a
separate dedicated system. The first approach implies several

severe disadvantages: Every time a new application is devel-
oped, the management functionality has to be reimplemented.
This means that application developers cannot focus on their
primary goal but must instead worry about how to manage
the infrastructure on which their application is supposed to
run. It therefore makes sense to strive for a modular generic
management system that is independent of the actual sensing
application.

Several such management frameworks have been proposed
for wireless sensor networks. They cover aspects like mon-
itoring the network (battery state, number of sent packets,
number of dropped packets, etc.), setting parameters, deploy-
ing executable code, and logging events that are relevant for
the purpose of network management. Unfortunately, these
frameworks impose a certain burden for a wireless sensor
network, because all management requests and responses have
to be sent, received, and processed. This overhead eats into the
network’s energy budget which tends to be strictly constrained
in the first place. This is especially true if the management
framework uses a separate network stack as proposed in [8].
This scenario leads to an apparent paradox: The management
framework built to enhance the sensor network’s robustness
and longevity instead hastens the depletion of the system’s
energy reserves. It can also gobble up available communication
bandwidth and thus cause the network to partition.

This paper contributes a more efficient management frame-
work for monitoring a wireless sensor network. Based on our
experimental results demonstrating its potential energy savings
and our analysis of the different strategies for cooperation
between the management system and the sensing application,
the proposed framework significantly reduces the overhead
for management purposes by utilizing the unused space in
data packets. Because the functionality of the management
framework is completely independent, it can effortlessly be
reused or combined with any sensing application. At the same
time, the framework allows communication costs to be kept as
low as those in a system whose management functionality is
deeply embedded in the sensing application. Our framework
therefore contributes to the improvement of wireless sensor
network management in two ways: It increases the energy- ef-
ficiency of management operations and eases the development
of managed applications. Measurements based on a prototype
implementation of the framework in an experimental setup



show that up to 61% of the energy previously needed for
management requests can be saved.

The remainder of this paper is structured as follows. In
Section II, we illustrate the potential advantage of our ap-
proach, i.e. how much energy can be saved if the sensor
application data and the management system data are merged
into a single packet. We also discuss and analyze the various
possible cooperation strategies between the sensor application
and the management system. Details of an implementation of
the framework as a prototype for a sensor network consisting
of MICAz Motes are presented in Section III. In Section IV we
evaluate the approach by setting up an experiment to explore
the trade-off between increasing the latency of management
requests and correspondingly decreasing the management
overhead. We then wrap up the paper with some concluding
remarks.

II. ENERGY-EFFICIENT MANAGEMENT

Radio communication is one of the predominant energy
consumers on most wireless sensor network platforms. There
are different medium access protocols that allow the radio
chip to be put into a low power sleep mode when it is
not sending or receiving data(e.g. BMAC, XMAC, SMAC).
Simply put, avoiding radio communication saves energy. The
implications of this simple observation for a management
system are discussed below.

A. Reducing the Communication Costs

It is no secret that sending and receiving data consumes a lot
of energy in wireless sensor networks. However, the amount
of energy that is actually spent on a single send or receive
operation depends on the deployed hardware and protocols.
To illustrate the energy costs of sending data, we provide
measurements with MICAz Motes running on the TinyOS
operating system and using BMAC [6] and DYMO [1] as
the network stack. This popular combination of hardware and
software is deployed in numerous wireless sensor networks.

The following experiment exploits the energy-saving poten-
tial of our approach. In two runs we measured the energy costs
for sending a piece of sensing information (in this example,
four bytes containing the reading of the light sensor) and a
piece of management information (in this example, a nine-
byte-long enumeration response, containing a node identifier
and information about the node type). To measure the current,
we used a Sensor Node Management Device (SNMD) [3]
that was developed at Karlsruhe Institute of Technology. We
considered two different approaches:

1) Sending the management data and the sensing data
separately: The management data was sent first, followed
by the sensing data after a gap of four seconds.

2) Sending the management data and the sensing data
together in a single packet.

Comparing Figure 1 to Figure 2 clearly illustrates the benefit
of sending the sensing data and the management data together.
In the figures, the x-axis shows the elapsed time and the y-axis
shows the current. The narrow spikes with a current of about

30 mA show the increased energy consumption whenever the
radio chip is switched to active mode. The BMAC protocol
periodically puts the radio chip into low power mode for a
fixed interval (local sleep time) in order to save energy. After
that the radio chip is put into active mode and samples the
channel in order to see if some other device is trying to
transmit a packet.

Figure 1 shows two longer periods of increased energy
consumption. The first one is caused by the transmission of
the management data. Because the receiving node might be
asleep when the sender starts the transmission, the sender has
to send an extended preamble that is at least as long as the
local sleep time of the receiving node. At about four seconds
on the x-axis, the sensing application samples the light sensor
and sends a packet containing the light value. This results in
another period of increased energy consumption.

In contrast, in Figure 2 the data provided by the sensing
application and the data provided by the management agent
are sent together in a single packet. This results in reduced
energy consumption, because the radio chip is put into active
mode only for short periods of time to sample the channel, as
can be seen between 0 sec and 1 sec.

Fig. 1. Current for sending management data and sensing data separately.
Two send operations cause two periods of increased energy consumption (0.9s
- 1.6s and 4.6s - 5.2s).

Fig. 2. Current for sending management data and sensing data together.
Because there is only one send operation, there is only one period of increased
energy consumption (4.9s - 5.5s).

The figures clearly show that although in each case the
sensor nodes executes the very same sensing operation and
the very same management operation, resulting in the same
amount of transmitted application data, the energy consump-
tion differs significantly. According to our measurements, the
total energy consumption in the eight second measurement
period was

• 66.029 mAs when the management data and the sensing
data were sent separately; and

• 55.573 mAs when the management data and the sensing
data were sent together.



So in the considered period of time, we were able to decrease
energy consumption by about 15% merely by sending one
large packet instead of two smaller packets. Considering the
fact that sending just the sensing data and no management data
at all consumed 55.546 mAs (see Figure 3) but sending both
types of data together consumed only slightly more energy,
i.e. 55.573 mAs, the management data essentially received a
”free ride” by traveling with the sensing data.

Fig. 3. Current for sending a reading from the light sensor only. Note that the
energy costs for sending the management data and the sensing data together
are only negligibly higher.

Following from the fact that energy consumption is directly
related to the total number of send and receive operations
rather than to the size of the transmitted application payload,
one way to reduce the number of send and receive opera-
tions is to use a single radio packet for several data sets.
This is common practice for example in sensing applications
that deliver several samples in a single send operation. We
extended this concept by enabling the management framework
to share radio packets with the sensing application running on
the sensor nodes, thereby preserving the autonomy of both
the management framework and the sensing application. The
approach is generic, so it can be applied to all kinds of
modular applications. In the following we will call the sharing
of packets by independent applications cooperative behavior.

B. Different Degrees of Cooperative Behavior

If packets are to be shared between the sensor network
application and the management framework, either the appli-
cation or the management framework has to wait for the next
packet to be sent. Because we wanted to keep the management
subsystem as transparent as possible to the application, we
decided that there should be no delay for messages sent by the
application. The management messages could thereby possibly
encounter additional delays, but this would also create less
overhead. We denote a management system that behaves in
the described way a cooperative management system.

Ideally, a cooperative management system allows a human
operator to define the maximum delay he is willing to tolerate
for a response to a management request. A longer maximum
delay results in a reduced number of messages sent in response
to his request. In general there are three different kinds of
management requests, each with varying degrees of coop-
erative behavior. The following three actors are involved in
management operations:

• Manager: A manager is a piece of software that acts on
behalf of a human operator. It sends management requests

to one or more management agents and processes the
corresponding management responses. We assume that
the manager is running on a central computer that also
acts as the data sink for the sensing application.

• Management Agent: A management agent is a piece of
software that runs on every managed sensor network
element. It is responsible for processing received man-
agement requests and creating the corresponding man-
agement responses.

• Sensing Application: The sensing application is the actual
application in a wireless sensor network. Attached sensors
are sampled and the retrieved values are transmitted to a
data sink.

1) Non-Cooperative Management Request: A human op-
erator can decide to send a management request in a non-
cooperative manner. This means that the agent is supposed to
respond as quickly as possible without regard for packets the
application might send in the near future. That way there is no
additional delay for the management requests. However, this
approach means that the potential of the unused space in the
application packets remains unexploited. In other words, the
increased overhead in packets is tolerated in favor of a fast
reply. Such a non-cooperative request and the corresponding
reply is depicted in Figure 4. The manager sends a request
that is non-cooperative and the agent responds immediately,
ignoring any opportunities for cooperation with the sensing
application.

Fig. 4. Sequence of operations if the sensing application and the management
agent do not cooperate.

Fig. 5. Sequence of operations if the manager specifies an infinite timeout.

2) Fully Cooperative Management Requests: A manage-
ment request can also be served in a fully cooperative manner.



This means that the manager signals the agent not to send a
response until the next application packet offers enough space
to cooperate. Obviously, this scenario offers only best effort
reliability, because if there is no next application message,
there will be no response at all. However, there will also be no
additional packet sent in response to the request. The possible
delay is therefore unbounded and the packet overhead is kept
to a minimum. This type of request is especially suited for
scenarios in which applications send data very frequently. An
example of this kind of message exchange scheme is illustrated
in Figure 5.

3) Cooperative Management Request: If the human oper-
ator needs an upper bound for the latency of a management
response, the previously described concept of fully cooperative
management requests is obviously not sufficient. However, it
is possible to define a maximum delay. The management agent
sets up a timer with the value specified by the manager within
the management request. If the sensing application does not
execute a send operation before the specified deadline, the
agent sends its management data in a dedicated management
response. Such a scenario is illustrated in Figure 6. If the
application executes a send operation before the timeout occurs
and there is enough space left inside the application’s packet,
the agent fills up the packet with its management data, as
shown in Figure 7.

Fig. 6. Sequence of operations if the manager specifies a timeout and the
sensing data are sent before the timeout occurs.

Fig. 7. Sequence of operations if the manager specifies a timeout that occurs
before the sensing data are sent.

By specifying a timeout value, the human operator can
precisely determine how much delay he is willing to tolerate
in exchange for the energy savings due to a reduced number

of sent packets. The longer the agent is allowed to wait for
a cooperative send operation from the application, the lower
the number of packets sent for management purposes will be.
In Section IV we will present measurements that explore this
trade-off. The specified timeout value represents the maximum
delay for a management response in the worst case scenario.

C. Modeling the Trade-off

Considering the correlation between sent packets and energy
consumption (as shown in Section II-A), the trade-off between
reduced overhead (in terms of the total number of sent packets
PNode) and increasing latency (TLatency) that we expect is of
great interest. Assuming a certain sensor network application
and a random uniform distribution of management requests
over time, we can derive a mathematical model of this trade-
off.

The following equations model the number of packets sent
by a managed sensor node and the resulting latency of manage-
ment responses depending on the degree of cooperativeness.
We assume a sensor network application that periodically
sends small payloads towards the data sink. This model was
evaluated in an experiment as described in Section IV.

The following input quantities are considered in the model:
• Resp: Number of management responses;
• App: Number of send operations for the actual applica-

tion;
• R: Number of packets sent in the considered time for

establishing a route to the data sink;
• TApp: Time in seconds between two periodical send

operations from the sensor network application;
• TTimeout: Time in seconds that a management response

might be delayed in order to establish a cooperation. It
is necessary that TTimeout is in the interval [0, TApp]
since a management request will be answered by the next
application message at the latest.

Note that the model can be customized to model all de-
grees of cooperative behavior described in Section II-B. Non-
cooperative management requests are modeled by setting
TTimeout = 0, whereas TTimeout = TApp models fully coop-
erative management requests. Selecting TTimeout ∈]0, TApp[
models an arbitrary degree of cooperative behavior in between
these two extremes.

1) Expected Number of Packets: The number of packets
originating from a sensor node can be calculated as a sum-
mation consisting of three summands: The packets needed
for application data or application data and management
responses, and second, the management responses that were
returned due to a timeout without cooperation. Additionally,
in a multi-hop network there is some overhead to establish
and maintain a routing structure towards the data sink. As the
arrival of management requests is supposed to be uniformly
distributed, the number of packets needed for management
responses exclusively should scale with (1 − TTimeout

TApp
). This

leads to the following equation with PNode denoting the total
number of sent packets:

PNode = R+ (App+ (1− TTimeout

TApp
) ·Resp)



The model considers a single sensor node. The total number
of messages in a network further depends on several other
factors (like network topology and routing protocol) that are
not considered in this model. However, reducing the number
of messages sent by a single node will still decrease the total
number of messages in the network.

2) Expected Latency: The expected latency TLatency in
turn can be calculated from the probability of the case that
the management response and application data can be sent in
the same packet and the probability of the case that one packet
for each is sent:

TLatency = TTimeout

TApp
· TTimeout

2 + (1− TTimeout

TApp
) · TTimeout

3) Discussion of Expected Benefit: According to this
model, the amount of messages sent by a sensor node for
management purposes decreases linearly with an increasing
maximum timeout. In contrast, the expected latency for man-
agement responses grows more slowly than linearly with
the specified maximum timeout (Figure 8). This implies that
selecting a degree of cooperative behavior that is close to fully
cooperative management requests will significantly reduce
energy consumption with a tolerable increase of latency.

Fig. 8. Expected latency.

III. SYSTEM DESIGN

Based on the results regarding the potential energy savings,
this section presents the system design of a generic man-
agement framework with an adjustable degree of cooperative
behavior. The framework consists of two major components:
the manager, running on a PC connected to the sensor network
via a base-station, and a management agent, running on each
sensor node. In our approach the manager is located on top of
the network stack just as the actual sensing application (see
Figure 9).

As described above, there are no dependencies between
the manager and the sensing application. Cooperatively used
packets are handled transparently from the application by
the manager. The manager’s tasks are to react to certain
events according to predefined policies and to map actions
and properties to numeric keys. We decided to use a numeric

Fig. 9. Architecture on the host computer.

representation for describing requests for management actions
instead of human-readable textual representation in order to
save precious space in data packets. Finally, the manager offers
an interface for a human operator. This might be a GUI or a
simple command line tool.

On sensor nodes the architecture looks slightly different, as
depicted in Figure 10. The management agent is located as a
shim between the actual sensing application and the network
stack. Replicating the interfaces of the network stack, it offers
the same network services to the application as the network
stack itself. Whenever the application is willing to support a
cooperative send operation, it calls the send method provided
by the management agent. In this way the management agent
can create data structures containing the application’s payload
as well as the management payload. Then the management
agent calls the send method of the network stack.

Fig. 10. Architecture on the sensor node.

A. Packet Format

Two message formats have been defined for the purpose
of requesting management information and answering these
requests. Management requests are created by the manager and
sent to the corresponding sensor node. Management responses
are delivered from the respective node to the data sink. The
packet formats are explained in Sections III-A1 and III-A2.



1) Management Request: The actual management request
data structure is sent and received as the payload of a DYMO
data packet. Using the message id, it is handed over to the
management agent on the receiving sensor node. The three
fields of this data structure are described in the following.

0 7 8 15 16 23 24 31

(Physical-, MAC-, and DYMO header)
hhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhh


packet
headers

control seq no request key

Fig. 11. Management request packet format.

control: Eight control bits allow to encode the delay the
manager is willing to tolerate for a response. A timeout value
of 0 denotes a non-cooperative request whereas 255 denotes
a fully cooperative request. All values in between specify a
timeout value in seconds.

sequence number: Using the sequence number field, the
manager can map incoming responses to the corresponding
request. This is necessary because the different sensor nodes
might return their answers at different points in time.

request key: As mentioned earlier, each property of a sensor
node that is worthy of being monitored can be identified using
a numeric key. This request key is a 16-bit integer number.

2) Management Response: A management response addi-
tionally features a pointer to the application data, the collection
id of the application, and the application data itself.

0 7 8 15 16 23 24 31

(Physical-, MAC-, and DYMO header)
hhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhh


packet
headers

app id of manager ptr to app data control seq no

request key management data . . .

app id of app data application data . . .

Fig. 12. Cooperative response packet format.

application id of manager: The application id specifies
the application that is expecting the data in the data sink
(comparable to a UDP port). This field is used to identify
the manager as the appropriate handler for this message.

pointer to application data: This field tells the receiving
manager if and where application data can be found in this
packet. A value of 0 in this field tells the receiving instance
that this packet contains no application data at all.

management data: The management data are of variable
length depending on what kind of data are being sent. That

is why there is a dedicated pointer that tells the receiving
manager where the application data starts.

application id of sensing application: The application id
specifies the application that is expecting the data in the data
sink (comparable to a UDP port).

B. Processing of Cooperatively Used Packets
Whenever a packet contains application data as well as

management data, the management data have to be extracted
and processed by the manager, while the application data
have to be passed to the application. The receiving part of
the sensor network application should not experience any
difference in handling a cooperatively used packet and a packet
used exclusively by the application exclusively.

Thus, a cooperatively used packet arriving at the data sink
is handed to the manager first. The manager extracts the
management data and creates a new packet which contains the
application data. It uses the pointer to the application data and
the application id of the application data (see Section III-A2)
for this purpose. This packet in turn is processed like every
incoming packet by the network stack. When the application
receives it, there is no difference at all compared to receiving
a non-cooperative packet. The entire processing of a cooper-
atively used packet is illustrated in Figure 13. It consists of
five steps:

1) The PacketDispatcher (PD) receives the packet from the
MAC layer;

2) The PD determines the responsible packet handler with
ActiveMessageId. In this case, it is the DymoController
(DC);

3) Using the application id of the packet, the DC deter-
mines the handler that is registered for this packet. In
this instance, it is the manager;

4) The manager extracts the management data. Then it
hands over the application id of the application along
with the application data to the DC;

5) The DC uses the application id to finally deliver the
sensing data to the sensing application.

Fig. 13. Processing of a packet that bears management data as well as
sensing application data.

IV. EVALUATION

In order to evaluate the proposed concept of a cooperative
management framework and to validate the model introduced



in Section II-C, a prototype of the management agent was
implemented and deployed along with a light measurement
application on a MICAz Mote. The sensor node sent four-byte-
long light readings towards the data sink every 30 seconds. The
data sink, a laptop with an attached base-station, collected
these values. We used the DYMO [1], [7] protocol, which
comes with the TinyOS operating system, as the network layer.
We decided to build upon DYMO and BMAC [6], [4] because
they are used in a couple of real-world sensor network projects.
However, the management agent and the manager component
could be used on other network stacks as well. They do
not depend on any specific features provided by DYMO and
BMAC.

We performed 13 independent evaluation runs to determine
the influence of cooperation on the overhead that the man-
agement framework creates. In each run the manager sent
30 management requests to the sensor node and measured
the delay between sending the request and receiving the
response. The time that passed between two management
requests was randomly chosen between 30 and 60 seconds.
However, the sequence of randomly chosen time frames was
made uniform in all 13 runs in order to create a reproducible
setting. We measured the current between the sensor node and
the power supply to determine its energy consumption. To
obtain a reference value, we determined the the quantity of
energy consumed when no management information at all was
requested. Again, to measure the current, we used an SNMD
[3] with a sample rate of 2kHz.

A. Trade-Off: Delay vs. Energy Consumption

Waiting for the next send operation of the sensor network
application means accepting an additional delay in receiving
the management response. We measured the delay times
caused by the different degrees of cooperation in our experi-
ment.

In each of the 13 runs, the manager sent out the management
requests with a different degree of cooperation. The degree
of cooperation denotes the timeout value in seconds that the
agent is allowed to wait for an opportunity to transmit the
management data cooperatively.

Figure 14 shows the average latency for all 30 management
requests during each run, including the standard deviation.
In general, the measurements support the model developed
in Section II-C: With increasing cooperativeness, the latency
increases less than linearly . However, the measured average
latency turned out to be about 1.4 seconds higher than pre-
dicted by our model. This is due to the processing time of
request and response messages and an additional delay of 1
second resulting from the 500 ms long BMAC preamble.

We conclude from Figure 14 that the average delay of a
management response is shorter than the upper bound specified
by the manager. The price to pay for increased coopera-
tiveness, which increases latency for management responses,
grows more slowly with higher timeouts.

Figure 15 shows that there is a clear benefit to taking the
additional delay into account: The amount of energy consumed

by the managed sensor node for management purposes can be
significantly reduced by cooperative behavior. In Figure 15 just
the energy used for management purposes is considered. This
quantity was arrived at by subtracting the energy consump-
tion measured when no management requests or responses
whatsoever were sent from the measured energy consumption
with management functionality enabled. We conclude from
Figure 15 that a mean delay time of 15 seconds saves up to
61% of the energy previously spent for management purposes.

When the maximum timeout for management responses is
set to 30 seconds or higher, every single management response
is sent piggyback with a packet containing sensing data. Even
in this case there is obviously some energy overhead for
conducting management activities. This overhead is caused by
receiving and processing the management requests.

Fig. 14. Latency of management responses depending on the degree of
cooperation.

Fig. 15. Energy consumption for management purposes.

V. RELATED WORK

The management of wireless sensor networks has been
addressed in several publications: Wagenknecht et al. provide
in [10] a survey of the different tasks of a management frame-
work. They distinguish the four major tasks, i.e. monitoring,
configuring, code deployment, and management of the sensor



readings. We chose to focus on monitoring because we think
it is the most frequently used aspect.

In [8] Tolle et al. propose a management platform for the
purpose of monitoring parameters that are relevant from a
network management perspective. They point out that the
management and the actual application of a wireless sensor
network should be loosely coupled so that the failure of
the application does not necessarily affect the management
system. They even run their management platform on top of
its own network stack. We think that the additional memory
consumption as well as the creation of network traffic for a
second routing tree is a high price to pay for the increased
robustness. That is why we tried to reduce the communication
overhead on a packet basis by using not only the network
stack and routing structures but also the unused space in single
packets across the border of management and application.

The concept of piggybacking data from different sources
in order to reduce communication costs in wireless sensor
networks has been used in a different context before. In [9]
the overhead of network gossiping is reduced by piggybacking
the data of different message streams. However, we focused on
the special needs of a network monitoring platform: Without
disturbing the actual sensing application, management requests
are served transparently. Depending on the network operator’s
requirements, the additional latency that occurs can be flexibly
controlled. In addition, in this project we chose not to target
specific network protocols.

The trade-off between responsiveness and energy consump-
tion in wireless sensor networks has been examined before,
but in a different context. In [2] it is proposed to increase
the time that it takes to deliver information to the data sink
and to thereby decrease the energy consumption of the entire
network. But this study explicitly targets sensor networks with
moving data sinks. By sending data whenever the moving data
sink is nearby the number of hops and thus the over all energy
consumption for delivering the data can be reduced.

The authors in [5]approached our problem from a different
angle: They address how to assign roles, distribute code, and
upgrade code on the fly. Their approach to reducing network
traffic caused by the management framework is to create
smaller amounts of code that needs to be distributed. This
solution complements our approach and could be combined
with a cooperative usage of data space in application packets.

VI. CONCLUSION

In this paper we examined the trade-off between energy
consumption for the purpose of network management and the
latency of management requests. We proposed the concept of
cooperative requests, which allows the data sent by the actual
sensor network application and the management agent to be
clustered. In this way the number of packets as well as the
number of sent bytes can be reduced considerably.

Using a prototype, we proved the feasibility of our approach
as well as its effectiveness. The prototype was used to run the
management platform concurrently with an exemplary sensor
network application. In an experimental setup we measured

the number of sent packets and the latency of management
requests depending on the degree of cooperation between the
management framework and the sensor application. Although
the quantitative results are dependent on the particular setup
of our experiment, they clearly show that the more latency an
operator is willing to tolerate with respect to the fulfillment of
management requests, the more he can reduce the number of
packets that have to be sent, and this decrease in transmission
traffic results in genuine energy savings. This interrelation can
be exploited in order to use the tight energy budget of a sensor
network in an efficient way.

ACKNOWLEDGMENTS

The authors want to thank Detlev Meier, Patrick Armbruster,
and Mario Pink for their help concerning the SNMD. This
research is supported by the ”Concept for the Future” of
Karlsruhe Institute of Technology within the framework of
the German Excellence Initiative.

REFERENCES

[1] I. Chakeres and C. Perkins. Dynamic manet on-demand (dymo) routing.
IETF Internet-Draft, 2008.

[2] L. Galluccio, A. Leonardi, G. Morabito, and S. Palazzo. A trade-off
between energy consumption reduction and responsiveness in infor-
mation delivery for delay-tolerant sensor networks with mobile sink.
In IWCMC ’06: Proceedings of the 2006 international conference on
Wireless communications and mobile computing, pages 563–568, New
York, NY, USA, 2006. ACM.

[3] S. Kellner, M.Pink, D. Meier, and E.-O. Blass. Towards a Realistic
Energy Model for Wireless Sensor Networks. In Proceedings of IEEE
Fifth Annual Conference on Wireless On demand Network Systems and
Services, pages 97–100, Garmisch-Partenkirchen, Germany, Jan. 2008.
ISBN 9781424419586.

[4] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A component-based
architecture for power-efficient media access control in wireless sensor
networks. In SenSys ’07: Proceedings of the 5th international conference
on Embedded networked sensor systems, pages 59–72, New York, NY,
USA, 2007. ACM.

[5] P. J. Marrón, A. Lachenmann, D. Minder, M. Gauger, O. Saukh,
and K. Rothermel. Management and configuration issues for sensor
networks. International Journal of Network Management – Special
Issue: Wireless Sensor Networks, 15(4):235–253, 2005.

[6] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
95–107, New York, NY, USA, 2004. ACM.

[7] R. Thouvenin. Implementing and evaluating the dynamic manet on-
demand protocol in wireless sensor networks. Master’s thesis, University
of Aarhus Department of Computer Science, 2007.

[8] G. Tolle and D. Culler. Design of an application-cooperative manage-
ment system for wireless sensor networks. In Wireless Sensor Networks,
2005. Proceeedings of the Second European Workshop on, pages 121–
132, July 2005.

[9] E. Ucan, N. Thompson, and I. Gupta. A piggybacking approach
to reduce overhead in sensor network gossiping. In MidSens ’07:
Proceedings of the 2nd international workshop on Middleware for sensor
networks, pages 19–24, New York, NY, USA, 2007. ACM.

[10] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and
S. Morgenthaler. Marwis: A management architecture for heterogeneous
wireless sensor networks, 2008.

[11] S. Yang. Redwoods go high tech: Researchers
use wireless sensors to study California’s state
tree http://www.berkeley.edu/news/media/releases/
2003/07/28 redwood.shtml. online, 2003.


