
Implementation and Evaluation
of a NAT-Gateway for the

General Internet Signaling Transport Protocol
Roland Bless and Martin Röhricht

Institute of Telematics
Karlsruhe Institute of Technology (KIT)

Zirkel 2, P.O.Box 6980, 76049 Karlsruhe, Germany
Email: {bless, roehricht}@kit.edu

Abstract—The IETF’s Next Steps in Signaling (NSIS) frame-
work provides an up-to-date signaling protocol suite that can
be used to dynamically install, maintain, and manipulate state
in network nodes. In its two-layered architecture, the General
Internet Signaling Transport (GIST) protocol is responsible for
the transport and routing of signaling messages. The strong pres-
ence of Network Address Translation (NAT) gateways in today’s
Internet infrastructure causes some major challenges to signal-
ing protocols like NSIS. The address translation mechanisms
performed by common NAT gateways are primarily concerned
with address information contained in the IP and transport layer
headers. Messaging associations between two signaling peers do,
however, rely on address information contained in GIST data
units. If a non GIST-aware NAT gateway merely adapts addresses
in the IP and transport headers, inconsistent state will finally be
installed at the signaling nodes. In this paper we present the
design, implementation, and evaluation of an application level
gateway for the GIST protocol, that translates GIST messages in
a way that allows for the establishment of messaging associations
between any two GIST nodes across a NAT gateway.

I. INTRODUCTION

Signaling protocols provide a useful set of tools to dynami-
cally install, maintain, and manipulate state in network nodes.
As a prominent example, the ReSource ReserVation Protocol
(RSVP) was once designed to establish state in network routers
for Quality-of-Service reservations on demand. In response
to some inherent deficiencies of RSVP, the Next Steps in
Signaling (NSIS) working group of the Internet Engineering
Task Force (IETF) designed an up-to-date signaling framework
that is not limited to a particular signaling application only
[1]. The NSIS framework follows a two-layered architecture
where the lower layer, called General Internet Signaling
Transport (GIST) [2] protocol, is solely responsible for the
routing and transport of signaling messages, whereas the upper
layer, called NSIS Signaling Layer Protocol, implements the
actual signaling application’s logic, e.g. for Quality-of-Service
resource reservations [3].

Network Address Translation (NAT) [4] was once intro-
duced in order to mitigate the potential shortage of IPv4
addresses. NATs come in a variety of different flavors [5],
mostly dealing not only with translation of IP addresses of
different address realms, but also by mapping TCP or UDP

transport protocol ports within a session (so called Network
Address and Port Translation – NAPT, in the following we
also use the term NAT for NAPT). The strong presence
of NAT gateways in today’s Internet infrastructure causes
some major challenges to signaling protocols like NSIS. Not
only that bindings must be established in these gateways in
order to properly exchange messages with the actual signaling
destination. Furthermore, NSIS signaling messages have to
carry IP address information in their GIST payload that
wouldn’t be translated by an ordinary NAT gateway. Hence,
in order to allow NSIS signaling sessions to be established
even across NAT gateways, the NAT gateway must be GIST-
aware and rewrite some of the addressing information within
the signaling message’s payload.

The GIST protocol specification already describes a ded-
icated NAT traversal object (NTO) that carries necessary
translation information which can then be used by a GIST-
aware NAT gateway. This NTO is designed in a modular way
which allows for the traversal of a number of subsequent
NAT gateways. It must, however, be created, inserted into a
signaling message’s payload, and later interpreted by a GIST-
aware NAT gateway. In this paper we present the design,
implementation, and evaluation of an application level gateway
for the GIST protocol, which translates GIST messages in
order to allow for the establishment of signaling associations
between GIST nodes across a NAT gateway.

The rest of this paper is organized as follows. Section
II gives an overview of GIST’s protocol operation with all
necessary protocol specific details and discusses related work.
In Section III and IV we provide an analysis of the design and
the implementation of a GIST-aware NAT gateway. Section V
provides evaluations and performance measurements before
we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Within the Next Steps in Signaling framework the General
Internet Signaling Transport (GIST) protocol is responsible
to discover NSIS-capable nodes along a data flow’s path, to
establish messaging associations between two adjacent GIST
nodes and to transport signaling messages along this route. In

order to setup state between two nodes, GIST uses a three-way
handshake, consisting of QUERY, RESPONSE, and CONFIRM
messages. Subsequently exchanged messages from a particular
signaling application are carried via GIST DATA messages.

GIST makes use of already present underlying transport
protocols, like UDP, TCP, TCP with TLS, or SCTP (cf.
Figure 1) and provides two modes of operation, namely a
datagram mode (D-mode for UDP data) and a connection
mode (C-mode for TCP and SCTP).

NSIS
Signaling
Layer
(NSLP)

NSIS
Transport
Layer
(NTLP)

IPsec

SCTPSCTPTCPTCPUDPUDP

TLS

General Internet

Signaling Transport

General Internet

Signaling Transport

IPv4/IPv6IPv4/IPv6

Signaling

Application 1
(QoS)

Signaling

Application 1
(QoS)

Signaling

Application 2
(NAT/FW)

Signaling

Application 2
(NAT/FW)

Figure 1. Layered Architecture of the NSIS Protocol Framework

QUERY messages are always sent in a so-called encapsula-
tion mode (Q-mode) by the Querying Node and are intercepted
by a Responding Node. In order to setup a messaging asso-
ciation between two adjacent GIST nodes, the initial QUERY
contains a context-free flag (C-flag) which indicates that a new
routing state must be established. The following RESPONSE
indicates whether a CONFIRM must be sent by the Querying
Node. In order to defend against denial of service attacks, the
Responding Node can use a so-called delayed state installation
mechanism where the installation of routing state is delayed
until a final CONFIRM message arrives upon which a return
routability check can be performed.

The way signaling messages are routed—e.g., strictly fol-
lowing the data path—is specified in a Message Routing
Method (MRM). The MRM contains all necessary addressing
information encapsulated in a Message Routing Information
(MRI) object, e.g. the source and destination’s IP addresses, as
well as the transport protocol and port numbers. Multiplexing
of messaging associations, i.e. the re-use of existing messaging
associations for multiple flows and sessions, is controlled by
a Network Layer Information (NLI) object. The NLI basically
contains a unique peer identity and an interface address
through which a signaling node can be reached. Due to the
specific address information contained in the MRI and the
NLI, these objects are of particular importance when it comes
to address translations within a NAT gateway.

Common NAT traversal techniques, such as STUN [6]
or TURN [7] do only operate on the address information
contained in the IP header. Therefore, any protocol that uses
address information in its payload needs to be explicitly
supported by an intermediate NAT gateway. Raz et al. specified

the construction of an SNMP-aware NAT gateway [8] and
Han et al. proposed an application level gateway for the
Session Initiation Protocol [9]. In recent work, Huang et al.
even propose the use of a programmable NAT [10]. Even
though different design aspects outlined in these papers are
of particular interest in the context of this work, the specific
solutions provided cannot directly be applied to an application
level gateway for the GIST protocol.

In two Internet-Drafts Pashalidis and Tschofenig provide
problem statements on a GIST NAT traversal [11] and a
GIST legacy NAT traversal [12]. In order to traverse legacy
NAT gateways, the authors propose the use of UDP tunnels
for signaling and data traffic. However, this approach relies
on static NAT bindings and does not differentiate between
signaling and pure data traffic. Furthermore, the UDP tunnels
add a significant level of complexity and overhead to the GIST
peers. The proposal towards a GIST-aware NAT gateway on
the other hand comes with a transparent and a non-transparent
approach. In the transparent approach the GIST header fields
are simply translated by the NAT gateway as it is done with
the layer 3 and layer 4 address information. This approach
allows the NAT gateways to be used completely transparent
for the GIST peers participating in a signaling session, but
it suffers from the restriction of not being applicable in case
cryptographic protection of signaling messages is used. The
non-transparent approach uses the aforementioned NAT traver-
sal object which is included by the GIST-aware NAT gateway
into initial QUERY messages and which is then subsequently
echoed back by the GIST responder. This work is based on
the non-transparent approach outlined in [11], but instead of
storing the entire translation information in an NTO object,
the translation information stored within our approach is split
between the NTO object and the GIST header.

III. ANALYSIS AND DESIGN
OF A GIST-AWARE NAT GATEWAY

In order to setup state for a signaling flow between two
adjacent signaling peers, GIST messages must always carry
addressing information in their header fields. A NAT gateway
that performs address translations in IP and transport layer
headers only, but not the GIST header, would create inconsis-
tent states for signaling flows at the end-points. Furthermore,
GIST handshake messages that setup state between any two
signaling nodes, carry additional addressing information.

GIST-aware NAT gateways must therefore only modify
signaling messages that are exchanged without any routing
state installed. This applies to initial GIST QUERY messages
that can be identified by the context-free flag (C = 1) in GIST’s
common header and subsequent RESPONSE messages that are
used to set up routing state.

The GIST protocol specification [2] already introduced a
so-called NAT traversal object that stores address information
about translated objects and needs to be included in initial
QUERY messages by each intermediate NAT gateway. Figure 2
depicts the object definition of an NTO. Its modular design

allows to keep track of all necessary address information that
has been replaced by NAT gateways along the path.

NAT CountType Count ReservedMRI Length

Original Message Routing Information

List of translated objects

Information replaced by NAT #1

Length of opaque information

Information replaced by NAT #N

Length of opaque information

… …

0 318 16 24

Figure 2. Type definition of a NAT traversal object according to [2]

According to the GIST specification, a GIST-aware NAT
gateway should only process QUERY messages that have the
C-flag set as well as D-mode messages carrying the NAT
traversal object. All remaining GIST messages, i.e., messages
sent in C-mode or D-mode without NAT traversal object
should be processed by the NAT gateway as ordinary data
traffic. Since C-mode messages are carried inside a TCP
transport connection they are not really visible to a NAT
gateway anyway.

The reason for subsequent GIST messages, i.e. initial CON-
FIRM and subsequent DATA messages, not to be processed
by the GIST-aware NAT gateway is, that messages after the
initial QUERY and RESPONSE need to refer to a common MRI.
Following this approach, this is the MRI of the Querying Node
which must be exchanged via the NAT traversal object.

An exemplified GIST three-way handshake between a
Querying Node (QN) and a Responding Node (RN) across
a GIST-aware NAT gateway is illustrated in Figure 3. First
of all, a GIST-aware NAT gateway must establish bindings
for the signaling data flows, e.g., for subsequent C-mode
signaling. Once an initial QUERY passes the gateway, it must
create new MRI and NLI objects that reflect the translated
address information and adds a NAT traversal object that
lists all translated objects. The NTO may also carry NAT
specific information that is useful for the NAT gateway, e.g.,
carrying state or state referral information. In case a NAT
traversal object already exists, this object must be extended
by additionally modified objects. After that, the message is
encapsulated in Q-mode and forwarded further along the path.

The Responding Node installs routing state according to
the information contained in the original MRI (QN) and the
translated MRI (NAT) and NLI (NAT). The triple (MRI,
NSLP-ID, Session-ID) is used as referral to routing states.
The QUERY’s NAT traversal object as being received by the
Responding Node is copied into the RESPONSE. Furthermore,
this RESPONSE’s MRI uses the original and unmodified values
of the Querying Node.

In any further GIST messages that cross the GIST-aware
NAT gateway and that belong to a flow for which bindings
already exist, only IP addresses and TCP/UDP ports are
translated. Subsequently sent CONFIRM and DATA messages
always carry the untranslated MRI and NLI objects of the

Querying

Node
IP: 10.1.2.1

GIST-aware

NAT gateway
IP1: 10.1.2.2
IP2: 10.2.3.2

Responding

Node
IP: 10.2.3.3

MRI (QN)

NLI (QN)
MRI (QN)

MRI (NAT)

NTO

NLI (NAT)

MRI, NLI,

IP, and UDP headers
are translated

MRI (QN)

MRI (QN)

NTO

NLI (RN)

State installation
MRI (QN)

MRI (QN)

MRI (QN)

NTO

NLI (RN)

Only IP and UDP

headers are
translated

MRI (QN)

NLI (QN) MRI (QN)

NLI (QN)

Only IP and UDP

headers are
translated

Src IP: 10.1.2.1 Src IP: 10.2.3.2
QUERY

QUERY

RESPONSE

Src IP: 10.2.3.3

RESPONSE

CONFIRM

CONFIRM

Src IP: 10.1.2.2

Src IP: 10.1.2.1

Src IP: 10.2.3.2

Figure 3. GIST handshake between a Querying Node (QN) and a Responding
Node (RN) via a GIST-aware NAT gateway

Querying Node and are not processed by the NAT gateway
with respect to addresses contained in GIST PDUs.

Special rules apply to the delayed state installation mecha-
nism where a Responding Node does not install state before
it received a final CONFIRM. As outlined above, CONFIRM
messages do only carry the untranslated MRI and NLI objects,
preventing the Responding Node from a correct routing state
installation in this case. The GIST protocol specification
leaves this issue open to the implementation. However, the
specification suggests to use the Responder cookie, in which
all of the translated objects that were received by the Re-
sponding Node can be carried securely. This Responder cookie
is finally echoed back by the Querying Node’s subsequent
CONFIRM message, upon which the Responding Node receives
the necessary information in order to properly install routing
state.

IV. IMPLEMENTATION

In this section, we describe the design and implementation
of our GIST-aware NAT gateway and explain how we perform
NSIS signaling even across NAT gateways. The implementa-
tion can be basically divided into a kernel and a user-space
part as depicted in Figure 4. The kernel part of the GIST-
aware NAT gateway intercepts and filters GIST packets. In
case a GIST packet’s payload must be further modified, it
is passed to a user space thread that performs the remaining
packet translations before the modified packet is forwarded by
the kernel.

Packet filtering is achieved in our implementation by means
of the Linux netfilter framework [13]. Initial QUERY and sub-
sequent RESPONSE messages are intercepted and passed into
an ip_queue data structure. The communication between
kernel and user space is realized on behalf of the Linux netlink
messaging system [14].

Netfilter
nf_conntrack_gist.ko

NSIS-ka Application

Level Gateway

User space

Kernel space

NIC

libipq/netlink

Figure 4. Architecture of an NSIS compatible Application Level Gateway

A. Implementation of the Kernel Module

The Linux netfilter framework provides a set of hooks
that correspond to different positions of a packet on its way
through the protocol stack. Hooks can be used to perform
rules or actions, e.g., on incoming packets, on packets being
forwarded, or on outgoing packets. We designed a GIST kernel
module that is registered at the netfilter’s PRE ROUTING
and POST ROUTING hooks and intercepts GIST QUERY and
RESPONSE messages.

Once a GIST QUERY enters the netfilter, the connection
is tracked and a conntrack structure is initialized for a
subsequent RESPONSE. In case the netfilter instance receives
a RESPONSE, NAT rules are created depending on the RE-
SPONSE message’s payload. These rules can then be used to
establish corresponding NAT bindings for IP and protocol port
translations for any subsequent messages that do only rely on
the functionality of a legacy NAT.

Initial QUERY and subsequent RESPONSE messages must,
however, be further processed by the user space part of the
application level gateway and are therefore passed to user
space by means of the ip_queue data structure.

B. Implementation of the User Space Part

The user space part of the application level gateway is based
on the already existing NSIS-ka implementation [15]. Note
however, that it is not necessary to run the entire NSIS-ka suite
on a GIST-aware NAT-gateway, so only some NTLP object
classes were re-used.

A netlink listener, where messages enqueued by the kernel
are received, builds the first part of the application level
gateway. Once packets are received by the NSIS-ka application
level gateway, the entire PDU is parsed, beginning with the IP
and UDP headers, and transferred into a GIST PDU. Address
information in the MRI and NLI of GIST QUERY messages
must then be translated, according to the NAT processing rules.
Furthermore, a NAT traversal object must be inserted right
after GIST’s common header and the source addressing mode
flag must be set to one in a GIST QUERY. After that, the
GIST PDU objects are serialized into byte code and IP and
UDP checksums are re-calculated, before the packet is copied
into the netlink’s message buffer from where it is then sent
back to kernel space.

The implementation of the kernel module consists of 420
lines of C code, whereas the GIST-aware NAT gateway

consists of additional 680 lines of C++ code, but makes
heavily use of already existing libraries and data struc-
tures of the NSIS-ka suite. The GIST implementation and
its underlying protocol library, which we had to use for
evaluation tests currently contain 40,692 physical source
lines of code, mostly based on C++ (93.78%). The code
of our GIST-aware NAT gateway implementation is pub-
licly available at https://svn.ipv6.tm.uka.de/nsis/dist/nsis-ka/
branches/20100602-gist-aware-nat-gw.

V. EVALUATION

We evaluated the implementation of our GIST-aware NAT
gateway in a real testbed environment, consisting of four
standard PCs being equipped with Intel Pentium 4 2.8 GHz
CPUs, 4 GB DDR-400 RAM, and four 1000TX Ethernet
cards. All four PCs ran Ubuntu 10.04 with Linux kernel 2.6.32.
The topology is depicted in Figure 5 where two NSIS hosts
that were equipped with the NSIS-ka framework exchanged
signaling messages across two GIST-aware NAT gateways.

Querying
Node

GIST-aware
NAT-Gateway

GIST-aware
NAT-Gateway Responding

Node

eth1 eth2 eth1 eth2
QN eth1 RNeth1

10.1.2.1 10.1.2.2 10.2.3.2 10.2.3.3 10.3.4.3 10.3.4.4

Figure 5. Evaluation Setup with two hosts communicating across two GIST-
aware NAT gateways

The latency between the two endpoints was intentionally
kept small (approximately 0.165 ms, measured by 100 ping
tests) in order to concentrate measurements on the pure
protocol and processing overhead.

First of all, we measured the time spent by each of the
GIST-aware NAT gateways that were used to process QUERY,
RESPONSE, CONFIRM, and DATA messages. In order to focus
on GIST message processing time, the DATA messages carried
only a simple artificial Echo-NSLP payload consisting of 16
additional bytes for a 132 byte long Ethernet frame. The
measurement points for the GIST message processing and
translation time correspond to the timestamps of tcpdump
packet captures at the ingress and the egress interface.

P
ro

c
e
s
s
in

g
 T

im
e
 [
m

s
]

Run number

Initial GIST Query on 1st GaNAT (with NTO object)
Initial GIST Query on 2nd GaNAT (with NTO object)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

Figure 6. Processing time of initial QUERY messages when NAT traversal
objects are included

Figure 6 shows the processing time for initial QUERY mes-
sages on both GIST-aware NAT gateways for 100 consecutive

P
ro

c
e

s
s
in

g
 T

im
e

 [
m

s
]

Run number

GIST Response (with NTO object)
GIST Confirm

GIST Data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70

(a) TCP Response, Confirm, and Data

P
ro

c
e

s
s
in

g
 T

im
e

 [
m

s
]

Run number

GIST Response (with NTO object)
GIST Confirm

GIST Data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70

(b) UDP Response, Confirm, and Data

Figure 7. Processing time for different GIST message types on the first GIST-aware NAT gateway

runs. As outlined above, these initial QUERY messages must be
processed by a GIST-aware NAT gateway by translating MRI
and NLI objects and including a new NAT traversal object that
carries the original MRI of the Querying Node.

The measurement results show a fairly stable processing
time of about 2.153 ms on average with a very small standard
deviation of 0.15 ms (cf. Table I) and a 95% confidence
interval in the range of (2.1476, 2.1542) ms. Note, that the
results for the first and the second GIST-aware NAT gateway
are also almost identical.

Measurement results for the processing time of 75 consecu-
tive runs of the remaining GIST PDUs on the first GIST-aware
NAT gateway are shown in Figure 7. While QUERY messages
must always be sent in Q-mode encapsulation, i.e., by using
UDP, subsequent GIST messages can be exchanged either via
UDP or via TCP, depending on the negotiated protocol stack
configuration data.

Note that the results of Figure 7 seem to indicate a rather
unstable behavior, but it actually stems from the high resolu-
tion of the plotted data sets. The absolute time values for all of
these three GIST message types are very small ranging from
0.008 ms and 0.026 ms on average and would otherwise not
be visible compared to the processing time of initial QUERY
messages.

Table I summarizes the results for the first GIST-aware NAT
gateway. The small values of all standard deviations suggest
a very stable behavior.

Processing time on the first GIST-aware NAT gateway
Avg [ms] Median [ms] StdDev [ms]

UDP Query (with NTO) 2.153 2.161 0.152
TCP Response (with NTO) 0.012 0.011 0.004
UDP Response (with NTO) 0.026 0.026 0.002
TCP Confirm 0.010 0.009 0.003
UDP Confirm 0.012 0.012 0.002
TCP Data 0.009 0.009 0.001
UDP Data 0.008 0.007 0.001

Table I
EVALUATION RESULTS FOR THE OVERALL PROCESSING TIME OF

DIFFERENT GIST PDUS ON THE FIRST GIST-AWARE NAT GATEWAY

Besides measuring the pure processing costs induced on a
GIST-aware NAT gateway, we also measured the duration of

complete GIST handshakes between the two end points with
one consecutive DATA message. We conducted tests for GIST
handshakes with and without NAT gateways in-between, in
order to obtain a resulting overhead. Figure 8 shows the results
obtained for complete GIST handshakes in case C-mode was
requested, i.e., when TCP connections were used. In this case
we only picked traces from our data sets that established an
entirely new TCP connection. Therefore, each trace consists
of an initial GIST QUERY as starting point until the TCP
acknowledgement for the first DATA message is received by
the Querying Node.

P
ro

c
e
s
s
in

g
 T

im
e
 [
m

s
]

Run number

Using NATs, no delayed state installation
Using NATs, with delayed state installation

No NATs, no delayed state installation
No NATs, with delayed state installation

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

Figure 8. Duration of complete GIST handshakes with one subsequently
sent DATA message measured on the Querying Node using TCP

The results are again fairly stable and show a time difference
for the complete handshake duration of about 5 ms between a
NAT-free setup (lower two curves) and the use of two GIST-
aware NAT gateways on the path (upper two curves). Using
delayed state installation induces a small processing overhead
in case NAT gateways are used, but no difference can be
observed by using no NAT gateways.

Figure 9 uses the same setups and measurements in case
only D-mode, i.e. UDP, is used. In this case the first time
stamp was again the initial QUERY message, whereas the
second timestamp had to be the emitting point of the final
DATA message. Again, we observe a very stable behavior
and this time we can not detect a difference between using
delayed state installation and using normal state installation.
The GIST handshake duration is about 1 ms faster when using
UDP instead of TCP.

P
ro

c
e
s
s
in

g
 T

im
e
 [
m

s
]

Run number

Using NATs, no delayed state installation
Using NATs, with delayed state installation

No NATs, no delayed state installation
No NATs, with delayed state installation

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

Figure 9. Duration of complete GIST handshakes with one subsequently
sent DATA message measured on the Querying Node using UDP

Table II summarizes the results obtained for complete GIST
handshakes for UDP and TCP connections, as well as by using
delayed state installation (DSI) or by not using it.

GIST Handshake duration using TCP
Avg [ms] Median [ms] StdDev [ms]

Using NATs, with DSI 6.843 6.820 0.178
Using NATs, without DSI 6.659 6.630 0.182
No NATs, with DSI 1.816 1.746 0.210
No NATs, without DSI 1.797 1.732 0.176

GIST Handshake duration using UDP
Avg [ms] Median [ms] StdDev [ms]

Using NATs, with DSI 5.737 5.722 0.127
Using NATs, without DSI 5.744 5.720 0.154
No NATs, with DSI 1.432 1.413 0.124
No NATs, without DSI 1.449 1.407 0.136

Table II
EVALUATION RESULTS FOR THE DURATIONS OF GIST HANDSHAKES WITH

ONE SUBSEQUENTLY SENT DATA MESSAGE

VI. CONCLUSIONS

In this paper we presented the design of a NAT application
level gateway for the General Internet Signaling Transport
protocol. Following this approach NSIS signaling messages
can safely traverse such NAT gateways and routing state can
be established even across NATs. The evaluation results show
only a slight overhead for processing initial QUERY messages
on a GIST-aware NAT gateway in the range of about 2.15 ms
on average. All subsequent GIST messages show almost no
processing overhead and do not exceed 0.026 ms on average.

Using GIST-aware NAT gateways has also only a small
impact on the duration of complete GIST handshakes from
end-to-end. While a GIST handshake and a subsequent DATA
message can be exchanged in a NAT-free setup within at most
1.82 ms on average, the complete duration of a handshake with
two GIST-aware NAT gateways on the path does not exceed
6.84 ms.

Furthermore, the measurement results showed that the use
of GIST’s delayed-state installation mechanism, which can be

used as a denial-of-service attack prevention, does not induce
a notable performance overhead, compared to a normal state
installation.

ACKNOWLEDGMENT

We thank Yun Lin for his contributions to the conceptual
elaboration of this work and the resulting implementation.
Parts of this work were funded by the Federal Ministry of
Education and Research of the Federal Republic of Ger-
many (support code 01 BK 0809, G-Lab, http://www.german-
lab.de/).

REFERENCES

[1] X. Fu, H. Schulzrinne, A. Bader, D. Hogrefe, C. Kappler, G. Karagian-
nis, H. Tschofenig, and S. V. den Bosch, “NSIS: A New Extensible IP
Signaling Protocol Suite,” Communications Magazine, IEEE, vol. 43,
no. 10, pp. 133–141, Oct. 2005.

[2] H. Schulzrinne and R. Hancock, “GIST: General Internet Signalling
Transport,” http://tools.ietf.org/id/draft-ietf-nsis-ntlp, IETF, Jun. 2009,
Internet Draft draft-ietf-nsis-ntlp-20.

[3] J. Manner, G. Karagiannis, and A. McDonald, “NSLP for Quality-of-
Service Signaling,” http://tools.ietf.org/id/draft-ietf-nsis-qos-nslp, IETF,
Jan. 2010, Internet Draft draft-ietf-nsis-qos-nslp-18.

[4] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” RFC 3022 (Informational), Internet
Engineering Task Force, Jan. 2001. [Online]. Available: http:
//www.ietf.org/rfc/rfc3022.txt

[5] F. Audet and C. Jennings, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787 (Best Current
Practice), Internet Engineering Task Force, Jan. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4787.txt

[6] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session
Traversal Utilities for NAT (STUN),” RFC 5389 (Proposed Standard),
Internet Engineering Task Force, Oct. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5389.txt

[7] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN),” RFC 5766 (Proposed Standard), Internet
Engineering Task Force, Apr. 2010. [Online]. Available: http:
//www.ietf.org/rfc/rfc5766.txt

[8] D. Raz, J. Schoenwaelder, and B. Sugla, “An SNMP Application Level
Gateway for Payload Address Translation,” RFC 2962 (Informational),
Internet Engineering Task Force, Oct. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2962.txt

[9] J. C. Han, W. Hyun, S. O. Park, I. J. Lee, M. Y. Huh, and S. G. Kang,
“An Application Level Gateway for Traversal of SIP Transaction through
NATs,” in Advanced Communication Technology, 2006. ICACT 2006.
The 8th International Conference, vol. 3, Feb. 2006.

[10] T.-C. Huang, S. Zeadally, N. Chilamkurti, and C.-K. Shieh, “A Pro-
grammable Network Address Translator: Design, Implementation, and
Performance,” ACM Transactions on Internet Technology, vol. 10, no. 1,
pp. 1–37, 2010.

[11] A. Pashalidis and H. Tschofenig, “GIST NAT Traversal,” http://tools.ietf.
org/id/draft-pashalidis-nsis-gimps-nattraversal, IETF, Jul. 2007, Internet
Draft draft-pashalidis-nsis-gimps-nattraversal-05.

[12] ——, “GIST Legacy NAT Traversal,” http://tools.ietf.org/id/
draft-pashalidis-nsis-gist-legacynats, IETF, Jul. 2007, Internet Draft
draft-pashalidis-nsis-gist-legacynat-02.

[13] P. McHardy, H. Welte, J. Kadlecsik, M. Josefsson, Y. Kozakai, and
P. N. Ayuso, “Firewalling, NAT, and Packet Mangling for Linux,” Jun.
2010. [Online]. Available: http://www.netfilter.org/

[14] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux
Netlink as an IP Services Protocol,” RFC 3549 (Informational),
Internet Engineering Task Force, Jul. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3549.txt

[15] Institute of Telematics, “NSIS-ka – A free C++ implementation of
NSIS protocols,” Jun. 2010. [Online]. Available: http://nsis-ka.org/

