

Implementation and Evaluation of a NAT-Gateway for the General Internet Signaling Transport Protocol

Roland Bless and Martin Röhricht

Institute of Telematics, Department of Computer Science

www.kit.edu

Motivation

- Signaling protocols useful set of tools
 - Dynamically install, maintain, and manipulate state in network nodes
 - Create messaging associations between signaling peers
- Network Address Translation (NAT) gateways
 - Mitigate potential shortage of IPv4 addresses
 - Translate IP address and UDP/TCP port information
- Signaling messages carry IP address information in their payload
 - NAT gateway must be GIST-aware
 - Rewrite addressing information in signaling message's payload
- Create an application level gateway for the General Internet Signaling Transport (GIST) protocol

Next Steps in Signaling Framework

- IP-based signaling framework
- Two-layered approach
- General Internet Signaling Transport Protocol (GIST)
 - Routing and transport of signaling messages
 - Message Routing Information (MRI)
 - Network Layer Information (NLI)
 - Messaging Associations
 - 3-way handshake (QUERY, RESPONSE, CONFIRM) plus DATA
 - Supports delayed-state installation
 - Installation of routing state at Responding Node delayed until final CONFIRM arrives

Signaling Message's Address Translation

Transparent translation

- Translate GIST header fields as is done with Layer 3 and 4
- → Not applicable if cryptographic protection is used
- Non-transparent translation
 - Use special NAT Traversal Object (NTO)
 - Must be included by NAT gateway into initial QUERY message
 - Echoed back by Responding Node

GIST handshake with **GIST**-aware NAT-gateway

Implementation

Kernel part

- Intercept and filter GIST packets
- Use Linux netfilter framework
- Communication to user-space via Linux netlink messaging system

User-space part

5

- Performs remaining packet translations
 - Translate IP and UDP header
 - Translate address information in MRI and NLI
 - Insert NAT Traversal Object
 - Serialize GIST PDU, re-calculate IP and UDP checksums
- Based on existing NSIS-ka implementation (http://nsis-ka.org)
 - Not entire NSIS-ka suite (~40,692 lines of code) required
- Kernel module 420 lines of C code
- GIST-aware NAT gateway 680 lines of C++ code

Evaluation

- Evaluation in a real testbed environment
 - Four standard PCs (Pentium IV 2.8 GHz, 4 GB RAM, Gbit Ethernet)
 - Ubuntu 10.04 with Linux kernel 2.6.32

Latency intentionally kept small (~0.165 ms)

- Processing time of different GIST PDUs on first GIST-aware NAT gateway
- Processing time for complete GIST handshake and one subsequently sent DATA message

Evaluation – Processing time for initial QUERY message

- Processing time for initial QUERY messages
 - NAT traversal objects are included

Evaluation – Processing Time of different GIST PDUs

- Measured on first GISTaware NAT gateway
- Over TCP

Over UDP

Evaluation – Complete GIST handshake

- Complete GIST handshake with one subsequently sent DATA message
 ¹² Using NATs, no delayed state installa
- Measured on Querying Node using TCP

Measured on Querying Node using UDP

Institute of Telematics, Department of Comp. Science

Conclusion

- Design of a NAT application level gateway for the General Internet Signaling Transport protocol
- Implementation of a NAT Traversal Object as being specified
 - Works as expected
 - Use GIST Responder Cookie for delayed-state installation
- \rightarrow Allows NSIS signaling messages to safely traverse such NAT gateways

Evaluations show

- Slight overhead for initial GIST QUERY messages
- Almost no overhead for subsequent GIST messages
- Only small impact on duration of complete GIST handshake
- Delayed-state installation with no notable performance overhead

Thank you for your attention

Questions?

11 03.09.2010 Implementation and Evaluation of a NAT-Gateway for the General Internet Signaling Transport Protocol

Institute of Telematics, Department of Comp. Science

Evaluation Results – Different PDUs

Processing time of different GIST PDUs on the first GIST-aware NAT gateway

Processing time on the first GIST-aware NAT gateway				
	Avg [ms]	Median [ms]	StdDev [ms]	
UDP Query (with NTO)	2.153	2.161	0.152	
TCP Response (with NTO)	0.012	0.011	0.004	
UDP Response (with NTO)	0.026	0.026	0.002	
TCP Confirm	0.010	0.009	0.003	
UDP Confirm	0.013	0.012	0.002	
TCP Data	0.009	0.009	0.001	
UDP Data	0.008	0.007	0.001	

Evaluation Results – Complete handshakes

Complete GIST handshake with one subsequently sent DATA message

GIST handshake duration using TCP				
	Avg [ms]	Median [ms]	StdDev [ms]	
Using NATs, with DSI	6.843	6.820	0.178	
Using NATs, without DSI	6.659	6.630	0.182	
No NATs, with DSI	1.816	1.746	0.210	
No NATs, without DSI	1.797	1.732	0.176	
GIST handshake duration using UDP				
	Avg [ms]	Median [ms]	StdDev [ms]	
Using NATs, with DSI	5.737	5.722	0.127	
Using NATs, without DSI	5.744	5.720	0.154	
No NATs, with DSI	1.432	1.413	0.124	
No NATs, without DSI	1.449	1.407	0.136	