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Abstract—While virtual networks have been subjected to
detailed analysis, prototypes are usually constructed and instan-
tiated manually or by means of control protocols that mostly
neglect security considerations. In this work, we present our
proposal for a Virtual Link Setup Protocol (VLSP) that is
designed as a modular extension to a standardized and extensible
state-of-the-art signaling protocol suite. We use these signaling
protocols to combine an authenticated and on-demand setup
of virtual links with the establishment of Quality-of-Service
guarantees in the underlying substrate. The solution presented
in this paper is not limited to a specific set of virtualization
techniques or tunneling mechanisms. We describe the design and
implementation of VLSP and evaluate its signaling performance,
as well as the overhead that is associated with the instantiation
of the virtual links.

I. INTRODUCTION

Network virtualization is a promising abstraction technique
that allows for optimizing the utilization of network resources
by enabling the concurrent isolated operation of multiple
virtual networks on top of a shared physical network infras-
tructure (the ‘substrate’). Furthermore, virtual networks can
be used to test and deploy novel network architectures and
protocols, which presents a viable approach towards the design
and deployment of a future Internet. For these reasons, there
has been tremendous interest in network virtualization over
the past few years and many large research initiatives have
examined the subject closely, such as the Global Environment
for Network Innovations (GENI) [1], the NSF NeTS FIND
Initiative [2], or the AKARI Architecture Design Project [3].
Within these research projects, various prototypes for network
virtualization architectures have been constructed and evalu-
ated. Many approaches are mainly concentrating on providing
an experimental facility for network researchers. Contrastingly,
the 4WARD project [4] of the EU 7th Framework Programme
focused on a more general network virtualization architecture
that also considers different business roles and various types of
providers. One important aspect was to consider the creation of
virtual links with quality-of-service (QoS) guarantees across
different substrate Infrastructure Provider (InP) domains.

In this work, we present a signaling protocol for the
dynamic setup of virtual links with QoS guarantees. We
tightly couple the setup of virtual links with an optional
QoS reservation and additionally enable sender authentication
of the involved signaling messages. This permits to verify

whether the sender of the virtual link setup request is actually
allowed to do so in accordance with the local policy and,
if so, to reserve the substrate resources associated with this
virtual link. As a common control plane for the deployment
of virtual networks on a global scale, we assume an IP-based
substrate in conjunction with the IETF Next Steps in Signaling
(NSIS) framework as an up-to-date IP-based signaling protocol
suite. Our solution is independent of a particular system
virtualization technology and can be used with, e.g., XEN or
KVM.

The remainder of this paper is organized as follows. In
Section II we give a brief overview of the key goals of network
virtualization and the resulting requirements to setup virtual
links on demand. We then describe the design and realization
of an authenticated Virtual Link Setup protocol that fulfills
these requirements in Section III. Section IV evaluates the
signaling performance of the proposed Virtual Link Setup
Protocol. We outline some related work in the context of this
paper in Section V before we conclude in Section VI.

II. NETWORK VIRTUALIZATION

Virtual networks basically consist of two components, vir-
tual nodes and virtual links. Virtual nodes appear and act
like physical nodes, i.e., they have access to a specific set
of resources, run a (network) operating system and other
software. But instead of running directly on dedicated physical
hardware, they only run in a virtual environment, where
a virtualization layer provides access to a set of virtual
resources. These virtual resources are composed of logical
and physical resources—e.g., CPU, memory, process table, or
memory buffers—that do not necessarily directly correspond
to the resources of the physical system that hosts the virtual
node. This allows a physical node to host multiple virtual
nodes simultaneously. Hence, physical resources can be shared
between different virtual nodes which may have an impact on
the system’s performance (e.g., the speed to forward packets)
and the isolation between virtual nodes and virtual networks.

There exists a multitude of different host virtualization
technologies that can be used for realizing virtual nodes
based on commodity PC hardware. The technologies can be
logically separated into full virtualization (e.g. Linux’ Kernel-
based Virtual Machine (KVM) or Oracle’s Virtualbox), para-
virtualization (e.g. XEN), and container-based virtualization



(e.g. Linux VServer or OpenVZ). However, a virtual network
should conceptually operate independently from the actual vir-
tualization technology being used. Moreover, one can imagine
dedicated router hardware with corresponding virtualization
support.

Virtual links are used to interconnect virtual nodes and
may likewise be realized by a variety of different substrate
technologies, e.g. through VLANs, MPLS or, for IP-based
substrate networks, by one of the existing IP tunneling tech-
niques like IP-in-IP tunnels [5], Generic Routing Encapsu-
lation (GRE) [6], Layer 2 Tunneling Protocol (L2TP) tun-
nels [7], or others.

It is a key goal of network virtualization to enable the
efficient use of resources, which can be achieved by sharing
resources between concurrent virtual networks. In order to
inhibit virtual networks from influencing each other adversely,
it is the responsibility of the underlying substrate to construct,
monitor, and maintain these virtual resources and to provide
them with a deterministic degree of mutual isolation. There-
fore, the provisioning of Quality-of-Service guarantees must
provide an integral component of any comprehensive network
virtualization framework. Since the elasticity of virtual re-
sources is a major advantage of virtual networks, they must
also support quick instantiation. Thus manual configuration at
scale is not feasible but requires a robust and flexible signaling
protocol that allows for automated on-demand setup of virtual
links. Furthermore, it must be ensured that the setup of virtual
links and the reservation of corresponding resources in the
substrate is properly authenticated in order to protect the setup
of virtual links from forged or tampered signaling messages.

Figure 1 shows an exemplary setting in which two virtual
nodes (VM1 and VM2) have already been created in an inter-
provider setting and are running on Router A and Router C in
the presence of other virtual nodes that may be interconnected
arbitrarily. Router B is a pure substrate router without network
virtualization support.
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Figure 1. Basic network virtualization example

The request to interconnect the two virtual nodes is triggered
by an abstract management entity, which initiates the signaling
procedure. To fulfill the previously motivated requirements,
i.e., to interconnect the two virtual nodes with a QoS-
provisioned virtual link in an authenticated manner, we need

• a description of the QoS requirements for the virtual link
• the locators of the substrate end points of the virtual link

• the identifiers of the virtual link’s endpoints, e.g., identi-
fiers of the virtual nodes and their virtual interfaces

• the (de-)multiplexing method of the virtual link (e.g., a
tunnel type, like L2 Tunnel, IP in IP, GRE, . . . )

• a key infrastructure that allows the computation of a
message authentication code or a digital signature for the
signaling messages

With these requirements in mind, the next section discusses
the design and realization of such a virtual link setup protocol.
For the remainder of this paper we assume an underlying IP-
based substrate, since IP is currently the least common denom-
inator on a global scale and a common substrate technology
is a precondition to deploy and operate virtual networks.

III. VIRTUAL LINK SETUP PROTOCOL

In this section, we propose a Virtual Link Setup Protocol
(VLSP) that permits an authenticated and dynamic setup of
virtual links with dedicated Quality-of-Service guarantees. Af-
ter successful authentication, the VLSP allocates the required
resources along the substrate path and connects the virtual
link’s ends to the virtual nodes’ interfaces. Virtual nodes
themselves are not aware of the signaling and do not need
to run the signaling application. The setup of the virtual link
takes place in the substrate and is coordinated by the signaling
control entities running solely on the involved substrate nodes.

For the setup of virtual links, the following steps must be
performed:

1) Both infrastructure providers, each operating its sub-
strate domain and hosting involved virtual nodes, must
acquire the substrate addresses of the opposite end of
the virtual links

2) The substrate addresses are then used by the signaling
control entity to establish a virtual link with Quality-of-
Service guarantees while verifying the signaling mes-
sages’ authenticity. The path-coupled signaling that the
VLSP uses by default ensures that a feasible substrate
path exists between the substrate nodes hosting the
virtual nodes.

3) Resource reservation along the substrate path is per-
formed by means of the corresponding Resource Man-
agement Functions (RMF) located inside the substrate
nodes.

4) Signaling must reach the opposite substrate node’s con-
trol plane in order to install state for the virtual links

5) The final step consists of the involved RMFs at the
endpoints actually installing state required to connect
the substrate tunnel end to the virtual link end (e.g.,
network interface of the virtual node) and bringing up
the virtual link

A. Quality-of-Service Signaling for Virtual Links

In order to perform Quality-of-Service signaling for virtual
links, we rely on the IETF’s Next Steps in Signaling (NSIS)
framework [8], which provides an up-to-date IP-based signal-
ing protocol suite and which can be used for a variety of
signaling applications. Even though QoS signaling can already



be accomplished by means of the QoS NSLP protocol [9], the
current NSIS framework does not provide support to setup
virtual links. As discussed previously, virtual links need to
be tightly coupled with the provisioning of QoS guarantees
in order to allow concurrent operation of mutually isolated
virtual networks. Therefore, we integrate the QoS signaling
in the substrate with the setup of virtual links and extend the
existing QoS NSLP protocol to include signaling information
for virtual links. This approach provides the following two
advantages: First, the integration of both tasks reduces the time
required in comparison to two distinct signaling operations and
second, by using the QoS NSLP as a basis, we do not need
to create an entirely new NSIS signaling layer protocol that
would otherwise provide a near-identical set of features.

Infrastructure providers must agree on a common method
and signaling protocol for setting up virtual links across
different substrate InP domains. We therefore assume that
InPs agree a priori (e.g., negotiated out-of-band via peering
agreements) to use NSIS with the VLSP extension for setting
up virtual links between substrate domains and to run NSIS
on the involved substrate nodes.

Figure 2 gives a conceptual overview of the NSIS protocol
architecture and incorporates the VLSP object as an extension
of the QoS NSLP.
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Figure 2. Conceptual overview of the NSIS protocol architecture with the
VLSP object and the Session Authorization object

The lower layer, called NSIS Transport Layer Protocol
(NTLP), is responsible for the correct routing and transport
of signaling messages between two adjacent NSIS nodes and
employs already existing transport protocols like UDP, TCP,
TCP with TLS, or SCTP. The General Internet Signaling
Transport (GIST) [10] protocol fulfills the requirements of an
NTLP.

The upper layer, called NSIS Signaling Layer Protocol
(NSLP), implements the signaling application logic and op-
erates either from end to end, from edge to end, or from
edge to edge. The QoS NSLP [9] is a soft-state protocol
that reserves resources along a data path and installs state
in nodes on this path accordingly. It conveys a dedicated
QoS Specification (QSPEC) [11] object for specifying QoS
parameters. Therefore, it abstracts from the actually used QoS
mechanisms on the data path like IntServ or DiffServ. The QoS
NSLP uses path-coupled signaling by default, which proves
especially advantageous for QoS resource reservations as it

allows to install state in exactly those nodes that belong to
the data flow’s path. Furthermore, it is assured that a working
path exists and the signaling path is automatically adapted in
case re-routing events occur. Note, that path-coupled signaling
works for any tunneled solution, where the outer tunnel IP
destination address is used as destination address for the
signaling messages that discover the signaling path.

B. Authenticated Setup of Virtual Links

One of the most important requirements when dealing with
resource reservations and the establishment of virtual links
is the ability to authenticate legitimate requests and to protect
the integrity of critical parts of a signaling message. The NSIS
protocol suite already provides an optional so-called Session
Authorization Object [12] which provides an authorization
token that can be used to authenticate NSIS signaling messages
on a per user or per session basis [13].

In order to be used for an authenticated on-demand setup of
virtual links, the Session Authorization object provides the fol-
lowing information elements: an authorizing entity identifier,
start and end time of the authorized session, a list of identifiers
for all the objects of this NSIS message that are covered by
the signature data, and the signature data itself. The integrity
protection can be ensured by means of shared symmetric keys,
Kerberos authentication, public key authorization via X.509,
or PGP certificates.

Figure 3 shows an exemplary binding of a Session Autho-
rization object and the NSIS message objects. Grey-shaded
objects are included into the signature data’s calculation in
order to be integrity-protected, such as the Session ID, the
Message Routing Information, or the QSPEC objects, for
instance. Furthermore, the signature data covers the new VLSP
object that is used to setup virtual links, and important parts
of the Session Authorization Object itself, such as the ID of
the authorizing entity, an ID for the used hash algorithm, the
aforementioned list of signed objects, or a key-ID to identify
the corresponding signature key. Other parts of the signaling
message that are subject to change during transition must not
be included into the integrity protection.
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Figure 3. Binding of Session Authorization Object and NSIS message objects



Note, that it is also possible to transport more than just one
Session Authorization Object with each NSIS message. This
allows for the authentication and integrity protection of NSIS
messages even across different administrative domains.

C. Implementation Overview

For the setup of virtual links we extended the existing
NSIS QoS NSLP by an optional NSLP object. The newly
defined Virtual Link Setup Protocol object can be added to
QoS NSLP’s RESERVE and RESPONSE messages and carries
the following additional information:

• Virtual Network ID: An identifier for the virtual network
for which the virtual link is created and which we assume
to be globally unique

• Virtual Node IDs of the source and the destination nodes
identifying the virtual nodes within the scope of a virtual
network

• Virtual Interface IDs of the source and the destination
nodes, which have only node-local meaning

• Virtual Link ID (optional)
• (De-)Mux method
• Opaque descriptor of the (De-)Mux method
We used 128 bit identifiers for the Virtual Network ID

and the Virtual Node IDs, 64 bit identifiers for the Virtual
Interface IDs and the Virtual Link ID, and a 32 bit Substrate
Tunnel Type as depicted in Figure 4. Consequently, this
object occupies 80 bytes (including the necessary NSLP object
header) of a 240 bytes QoS NSLP RESERVE message. The
overhead in the data plane is only dependent on the used
tunneling mechanism.
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0 64 96

VNode ID Source

VNode ID Destination

VInterface ID Source VInterface ID Destination
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Figure 4. Conceptual overview of the VLSP object

The addressing information carried in the VLSP object
enables the endpoints of the virtual link to connect the
substrate link ends (e.g., tunnel ingress/egress) to the virtual
link ends. Since the VLSP object information is only relevant
for the virtual link ends, these objects can be safely ignored by
intermediate nodes, which pass them on unmodified. Thus the
VLSP object can be introduced in a backwards compatible
fashion by using the NSLP object extensibility flags. These
flags instruct intermediate NSIS entities that are not aware of
this newly introduced object to leave this object unchanged
when forwarding the message.

Figure 5 illustrates the message sequence of a virtual
link setup procedure. The request starts with a QoS NSLP
RESERVE message that additionally carries a VLSP object to
setup the virtual link and a session authorization object to
authenticate the request and to protect the integrity of the

signaling message. This initial request is directed towards
the destination, i.e., Router C in this case. An intermediate
NSIS capable router, Router B, intercepts and interprets the
signaling message, upon which it checks the authenticity and
integrity of the message and performs admission control for
the Quality-of-Service request, but ignores the VLSP object as
it is not declared as the virtual link’s destination. Router B then
forwards the possibly adapted resource reservation request
with the original VLSP object and the session authorization
object.
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Figure 5. Exemplified scenario of a virtual link setup procedure

Once the signaling message reaches its designated destina-
tion, the authenticity and integrity of the message is checked
upon which the resource reservation request is processed by
the host’s resource management function and the virtual link
is set up according to the information contained in the VLSP
object. After that Router C sends a QoS NSLP RESPONSE
back to Router B, and Router B sends a QoS NSLP RESPONSE
back to Router A. Router A can then allocate the necessary
resources and establish the virtual link.

Since virtual links are usually used for bidirectional com-
munications, the QoS reservation should also be established in
both directions. Therefore, the QoS NSLP receiver, Router C
in our example, can optionally initiate a resource reservation in
the opposite direction and use the QoS NSLP’s Bound Session
ID object to create a logical binding between both reservations.
The additional RESERVE and RESPONSE messages for this
bidirectional reservation are not shown in Figure 5.

IV. EVALUATION

In this section, we evaluate the signaling performance of our
Virtual Link Setup Protocol. In addition to the measurements
of the overall duration of the virtual link setup—from the
initiation of a VLSP request until completion—we performed
more fine-grained evaluations regarding the overhead induced
by the creation of a tunnel for the virtual link.

Note, that we do not measure throughput or forwarding per-
formance as this is highly dependent on the used virtualization
technology and it is out of scope for this paper to compare
different virtualization technologies. Furthermore, we do not
evaluate any QoS-related metrics in the data forwarding path
as the VLSP acts only as a signaling protocol.



A. Experimental Setup

We evaluated the proposed virtual link setup protocol in a
testbed environment following the setup depicted in Figure 6.
Each node consists of Intel Xeon X3430 quad-core CPUs
running at 2.40GHz, 4 GB RAM, and four Intel 82580
Gigabit Ethernet network interfaces, interconnected by a Cisco
Catalyst Switch 6500 running CatOS. All nodes used an
Ubuntu 10.10 server installation with a 2.6.35 Linux kernel.
The latency between the endpoints was intentionally kept small
(approximately 0.709 ms between tb1 and tb4 measured by 100
ping tests) in order to concentrate measurements on the pure
protocol and processing overhead, i.e., no artificial delay was
added. Fine-grained measurements were performed by putting
reference points into specific places within the code. Once
such a reference point is executed, a timestamp is generated
from the system clock and recorded in memory. After the
entire experiment is finished, the recorded values are written
into a file. This avoids the measurements to be affected from
file I/O operations.
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Figure 6. Evaluation setup with four Linux routers and two different virtual
machines being connected through an EGRE tunnel

We decided to use Linux’ Kernel-based Virtual Machine
(KVM) for our tests as KVM is a well-tested and actively
maintained virtualization solution that is directly integrated
into the Linux kernel. As already mentioned above, the choice
of a particular virtualization technology is conceptually inde-
pendent from and opaque to the virtual link setup protocol.
The virtual links are established by means of existing tun-
neling mechanisms, i.e., we used a Linux software bridge to
interconnect each virtual interface with a tunnel endpoint. For
evaluation tests, we used Ethernet over GRE (EGRE) tunnels,
that are provided by the Linux kernel itself, between VM1

and VM2. Note again, that the outlined solution is generic
enough to also support different types of tunnels in order to
realize virtual links. We chose to use EGRE as this tunnel
type allows for plain layer 2 connectivity between the tunnel
endpoints, i.e., the virtual machine’s virtual interfaces.

In order for all four nodes to support the QoS signaling and
establishment of virtual links with QoS guarantees, each node
ran an instance of the freely available NSIS-ka implementation
[14] with disabled logging output. Nodes tb1 and tb4 used
the NSIS suite to establish a QoS reservation and setup the
virtual links, whereas the intermediate nodes tb2 and tb3 were
only involved in the QoS resource reservation but not in the
interpretation of the VLSP object. Potential routers on the path
that do not support NSIS would simply act as plain IP routers
and therefore not being involved in the QoS signaling.

B. Signaling Performance
We performed 100 separate runs to evaluate the signaling

performance of our virtual link setup protocol. The exper-
iments run as follows. First, an external program on tb1
issues a request to setup a virtual link between VM1 and
VM2 via a UNIX Domain Socket interface towards the NSIS
instance. After that, the NSIS signaling entity starts a VLSP
request towards tb4. This signaling request consists of a GIST
three-way handshake between each adjacent NSIS peers and
corresponding QoS NSLP RESERVE messages carrying the
VLSP object. Once the RESERVE reaches tb4, it establishes its
virtual link endpoint by calling a shell script. After successful
creation of that tunnel, tb4 sends a RESPONSE back towards
tb1. Once the NSIS instance on tb1 receives the RESPONSE
it also establishes its virtual link’s endpoint upon which it
finally informs the external program about the success of the
operation.

Figure 7 illustrates the duration of a virtual link setup
request for 100 separate runs. The entire time from initiating
a request until the external program receives the notification
of a successful reservation and an established virtual link took
37.8 ms on average with a standard deviation of only 0.97 ms.
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Figure 7. Signaling duration to setup a reservation and establish the
corresponding virtual link between tb1 and tb4

As outlined above, virtual links were established by calling
a shell script from the NSIS-ka instance that performs the
necessary Linux commands to setup an EGRE tunnel for
this specific virtual link and connect it to the corresponding
bridge of the virtual node. The time to setup the virtual links
took 13.3 ms on average on both, tb1 and tb4 (see lowest
green line), with a standard deviation of 0.2 ms. Note, that
the signaling time between the initial GIST QUERY and the
corresponding QoS NSLP RESPONSE, as shown by the blue
line, already contains the time required to setup the virtual
link on tb4. Once the QoS NSLP RESPONSE reaches tb1, it
reserves the resources and sets up the virtual link accordingly.
Therefore, we can determine, that the difference between
the blue and the green line accounts for the plain signaling
overhead. The second line from the top is the sum of the time
required for the NSIS signaling and the time required to setup
the virtual link on tb1. The difference between this black line
and the top red line accounts for the communication overhead
induced by the UNIX Domain Socket interface between the
NSIS instance and the external program.



Figure 8 shows the measurement results in case reservations
and virtual links are torn down. This is again initiated from
an external program on tb1. The entire time from initiating
this request until the final confirmation is sent to the external
program took 355.3 ms on average with a standard deviation
of 43.1 ms. This relatively high number—compared to the
previously discussed setup request—comes from the rather
high costs that are associated with the removal of a virtual
link, i.e. the EGRE tunnel in our case. It took 180.4 ms on
average to call a script that detaches endpoints from a tunnel
and then removes the tunnel from the system. Freeing tunnel
resources, however, is more costly than setting them up due to
additional checks on resource usage and clean up of structures.
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Figure 8. Signaling duration to tear down a reservation and remove the
corresponding virtual link between tb1 and tb4

The virtual link on the initiator’s side (tb1) was not removed
at the beginning of the tear down request, but rather once
the corresponding RESPONSE message from tb4 has been
received. The signaling time is measured from the emitting
tearing RESERVE on tb1, until the corresponding RESPONSE
reaches tb1 and already contains the removal of the virtual
link on tb4. In this case, the plain signaling overhead is
negligible compared to the costs that are associated with
the removal of an EGRE tunnel. The same applies for the
overhead of the communication with the external program via
the UNIX Domain Socket interface. Compared to the sum of
the signaling overhead and the time required to remove the
virtual link on tb1, the difference between this sum and the
total time measured on the external program is negligible.

Table I summarizes the evaluation results. In both cases, for
the establishment and the removal of virtual links, we see, that
the overall time, seen from the external program, is composed
of the total NSIS signaling duration plus the virtual link setup
on tb1 plus an overhead for the inter-process communication.
The NSIS signaling duration itself contains the time required
to setup or remove a virtual link on the receiver’s side, i.e.
tb4.

The results obtained are perfectly in line with the detailed
measurements for the plain signaling overhead. As shown in
Figure 9 a GIST three-way handshake took 1.37 ms between
tb1 and tb2 on average, processing and forwarding of a
QoS NSLP RESERVE on tb2 took 1.09 ms on average, and
processing and forwarding a RESPONSE on tb2 took 0.75 ms
on average.

Table I
EVALUATION RESULTS FOR THE ESTABLISHMENT AND REMOVAL OF

VIRTUAL LINKS FOR 100 RUNS

Establishment of a virtual link with QoS guarantee [ms]
Avg StdDev 95% Conf. Int.

External program 37.8 0.98 [37.62, 38.01]
Virtual link setup on tb1 13.3 0.27 [13.23, 13.33]
Virtual link setup on tb4 13.3 0.23 [13.23, 13.32]
Total NSIS signaling duration 22.8 0.40 [22.74, 22.91]

Removal of a virtual link and tear down of QoS reservation [ms]
Avg StdDev 95% Conf. Int.

External program 355.3 43.2 [346.75, 363.89]
Virtual link tear down on tb1 168.2 26.9 [162.25, 173.59]
Virtual link tear down on tb4 180.4 30.2 [174.39, 186.38]
Total NSIS signaling duration 185.4 30.2 [179.43, 191.40]
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Figure 9. Plain signaling overhead on tb2

The signaling between tb1 and tb4 consists of three times
GIST’s three-way handshake (3 × 1.37 ms = 4.11 ms), three
times processing a RESERVE (3 × 1.09 ms = 3.27 ms) and
three times processing and forwarding of a RESPONSE (3 ×
0.75 ms = 2.25 ms). Therefore, the plain signaling overhead
between an initial GIST QUERY and the final QoS NSLP RE-
SPONSE equals to approximately 4.11 ms + 3.27 ms + 2.25 ms
= 9.63 ms which equals almost exactly the time calculated
from the results gained from Table I with 22.8 ms – 13.3 ms
= 9.5 ms.

The evaluation results clearly demonstrate that the necessary
signaling to setup and tear down virtual links with Quality-of-
Service guarantees can be performed very quickly. Especially
with regard to the critical factor of a quick instantiation of
virtual links upon a user’s request, the provided NSIS-based
solution performed quite well with performance costs of less
than 40 ms in our setup. Furthermore, we showed that the NSIS
signaling itself only accounts for a marginal amount of the
total time consumed to setup or remove a virtual link. In case
a virtual link is established, the plain NSIS signaling accounts
for 9.5 ms on average which translates to about 25% of the
total time required. In case a user requests a virtual link to
be torn down, the plain NSIS signaling accounts for 5 ms on
average which translates to only 1.4% of the total time required
to tear down the virtual link.

The session authorization object from [12] was also im-
plemented and secured the signaling message exchange by



applying an HMAC-based signature. The signature key for the
HMAC was pre-shared and installed on tb1 and tb4 prior to the
signaling message exchange. Table II shows the measurement
results of 100 consecutive runs. An HMAC signature genera-
tion takes 31µs on average at tb1, the corresponding HMAC
verification takes 40µs at tb4. The session authorization object
comprised 104 bytes of data and included also the VLSP object
contents in its message authentication digest. These results
show that integrity protection of virtual link setup signaling is
possible with small computational overhead.

Table II
EVALUATION RESULTS FOR HMAC GENERATION AND VERIFICATION FOR

100 RUNS

Duration of HMAC-based integrity operations [µs]
Avg Min Max StdDev

HMAC creation 31.478 29.615 46.211 2.633
HMAC verification 39.731 36.096 64.754 3.222

V. RELATED WORK

One of the most popular network virtualization research
systems is the X-Bone [15] which deploys and manages virtual
networks. The X-Bone overlay networks use two-folded IP-in-
IP tunneling, provide a user-interface for the configuration of
overlay networks, and support the use of recursive overlays.
The X-Bone uses scripting to manage its networks. In this
work we focus on the signaling for plain virtual links on
top of an IP-based substrate. We therefore don’t promote any
particular overlay addressing scheme that can be used within
this virtual network. Instead, the virtual links can be used as-
is which allows for general purpose use of such virtual links.
Comparable to the X-Bone approach, security can be achieved
either for the overlay link itself via IPsec or through another
appropriate form of security protection inside the virtual link.

In earlier work, Lim et al. introduced a Virtual Network
Service (VNS) architecture that can be used to deploy cus-
tomizable virtual private networks with QoS guarantees [16].
A dedicated signaling protocol called Beagle is used for
resource allocation for virtual links. This QoS support is,
however, only enforced on virtual routers and does not perform
flow-based signaling along the underlying substrate’s data
path.

Integrated Quality-of-Service support for virtual networks
was also part of several overlay systems, such as Darwin [17]
which also uses Beagle as its resource allocation protocol and
includes a VNS component called supranet [18] for dynamic
overlay deployment. This component requires, however, OS
modifications in order to use custom tunneling and Quality-
of-Service support. Very much like in the X-Bone we aim
at avoiding any operating system or application modifications
that are necessary in order to use our virtual links.

Bandwidth shares between virtual links are of particular im-
portance for virtual networks. In order to overcome inefficient
static division of resources for virtual networks, the DaVinci
architecture [19] uses optimization theory to efficiently share

underlying network resources. In our approach we don’t aim
at an optimum resource sharing between virtual links, but want
to provide guaranteed Quality-of-Service resource reservations
for virtual links, for which we install and maintain state on
network nodes by means of IP-based signaling protocols.

In [20] Feamster et al. propose a high-level design of
an architecture for concurrent virtual networks by separating
infrastructure from service providers. The architecture allows
for the support of real end-to-end services. According to
the authors, signaling protocols should then be used for the
coordination between service and infrastructure providers.

A very promising approach towards a network virtualization
platform builds Trellis [21], [22]. Virtual links are realized via
a Ethernet GRE (EGRE) tunneling mechanism which allows
for the appearance of direct layer-two link connectivity be-
tween any two virtual nodes on top of an existing IP-substrate.
The implementation is flexible enough to allow virtual hosts to
control their own forwarding tables and still provide isolation
of different virtual links by terminating virtual links in the
root context rather than in the virtual host containers. We
partially follow this approach and do also provide layer-two
connectivity between virtual nodes. However, Trellis does not
consider signaling mechanisms to control elements in the
substrate, e.g. for QoS guarantees or an on-demand setup of
virtual links.

Schaffrath et al. [4] recently presented a proposal and initial
prototype of a network virtualization architecture. Different
from research initiatives like GENI, which focused on the
provisioning of an experimental facility, this proposal identifies
the different entities and roles that are necessary for a network
virtualization architecture. In this proposed architecture, the
responsibilities to manage a virtual network are separated be-
tween virtual network operators, virtual network providers, and
infrastructure providers. Virtual link setup was not explicitly
considered or described in detail. The approach, however, fits
well to the proposal of our virtual link setup protocol that
is triggered by the infrastructure providers on behalf of the
requests coming from the virtual network providers.

VI. CONCLUSION

The herein proposed virtual link setup scheme couples a
quality-of-service resource reservation in the substrate with
the setup of a virtual link between virtual nodes. While the
resource reservation basically takes only a small amount of
time, the setup and tear down of virtual links take longer due to
shell script execution. Instead of using a resource reservation
protocol and a separate tunnel setup protocol we combined
both protocols leading to a more efficient solution, which
can be additionally secured by using the session authorization
object.

As the Quality-of-Service guarantees are currently bound
to the outer tunnel endpoints, IPv6 could provide an even
better isolation between different virtual links in terms of
QoS, as each virtual node may be easily equipped with a
dedicated IPv6 address of the substrate node’s subnet. This
would allow for an easier flow classification. However, this is



future work since the current Linux kernels do unfortunately
not yet provide support for IPv6 as the substrate protocol for
GRE and L2TP. We are currently extending our approach by
using NSIS also for the node setup thus working towards a
more integrated solution.
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