Energy Evaluations in Wireless Sensor Networks – A Reality Check

Christian Haas, Joachim Wilke
{christian.haas|joachim.wilke}@kit.edu
Energy Evaluations

- Most future WSN applications need small and cheap sensor nodes
 - Implicates heavily constrained energy, memory and processing resources
 - Requires special care for resource efficiency, e.g. energy-efficiency

- Common practices to proof energy-efficiency
 - Protocols are evaluated in isolation
 - Possible influence of cross-layer effects neglected
 - Use “simple” simulator tools, e.g., TOSSIM, OMNeT++
 - Need application code modification or separate implementation
 - Not designed for getting energy data
 - Estimate energy consumption by
 - Counting packages
 - Sum up data volume

- What is appropriate or “sufficient”? → We check with reality!
Experiment setup

- Send a single data packet from node A to node B
 - Use TinyOS, Low Power Listening enabled
 - Measure an interval of 10 seconds, that includes exactly one transmission
 - Trigger transmission at random time, repeat 100 times

- Use local WSN testbed (SANDbed)
 - Provides distributed energy measurement of approx. 20 MICAz nodes
 - High resolution of measurements (up to 250 kHz)
 - Proven measurement error below 1% [1]

Experiment Example

Current draw in mA

Transmitting

Sender Energy Consumption

Receiving

Receiver Energy Consumption

Time in s
Experiment Example – Detailed View

Current draw in mA

Sender Energy Consumption

Preambel

t_{LPL}

Receiver Energy Consumption

t_{CCA}

Time in s

0 0.5 1 1.5 2
Experiment Parameters

- **Important parameter**
 - t_{LPL} – LPL sleep interval
 - t_{CCA} – Duration to check the medium for activity
 - S – payload size

- **Expectations**
 - The lower t_{LPL} the more energy is consumed (i.e., higher duty cycle)
 - The bigger the payload S is, the more energy is consumed
Influence of t_{LPL}

- Sending (mostly) more expensive than receiving
- Larger t_{LPL} not always decreases energy consumption
- Optimal value for t_{LPL} exists
- High fluctuation, depending on transmission and timing of transmissions
Influence of payload size S

- Receiver: Payload size makes no difference
 - t_{CCA} dictates energy consumption

- Sender: 90 Bytes payload is slightly less expensive
 - Tx state is less expensive than Rx state

- Influence of MAC parameter more important!
 - Results only valid for CC2420 radio and TinyOS LPL!
Influence of hardware tolerances

- Node A consumes more energy than node B
- Independent of node role
- Experiments with all 20 testbed nodes give up to 10% deviation
Lessons learned

- Power on nodes asynchronously
 - Avoids timing based effects
 - Requires many runs of the same experiment setup
- Wait after startup
 - Nodes have to be powered on and off many times for evaluation
 - After startup current consumption of a node fluctuates for the first few seconds
- Be aware of hardware tolerances
 - Important with lifetime estimations and comparison of experiments run on different nodes
- Take your time and have space available
 - This way of evaluation is much more time consuming than simulation
 - We collected several gigabytes of raw measurement data (using only 9 kHz sampling frequency)
Conclusion

- Results of real measurements are worth time and effort
- Disproved some common beliefs
 - Energy consumption and data volume not necessarily correlate
 - Protocols cannot be evaluated in isolation
- Made aware of cross layer effects (e.g., MAC)
 - Is often more important than other parameters (communication)
- Summarized best practices
- Only trust (energy) evaluation results if cross-checked with reality

Future work

- Compare results with simulator tools
- Improve AVRORA where possible
 - Hardware tolerances
 - Energy model
- Goal: Make most evaluations by simulation, but be aware of reality
Thank you for your attention!

Christian Haas, Joachim Wilke
{christian.haas|joachim.wilke}@kit.edu