
Efficient In-band Service Announcement
Through IPv6 Address Encoding

Christoph P. Mayer, Christian Hübsch, Martin Röhricht
Institute of Telematics – Karlsruhe Institute of Technology (KIT) – Germany

Abstract—The announcement and discovery of network ser-
vices represents one of the most important functionalities in
today’s networks. In order to find and use services provided
by remote systems, service management and dedicated service
discovery protocols are used. These mechanisms introduce,
however, additional overhead, especially in resource-constrained
environments such as sensor networks. In this paper, we propose
an in-band service announcement mechanism through IPv6
address encoding. In this scheme, IPv6’s large address space
is used by a system to encode its service information into the
host part of its IPv6 address. This information can then be
extracted and efficiently used by other systems, allowing for
service announcement without the need for additional protocols.

I. INTRODUCTION

In distributed networks without a central management
entity, discovery of services provided by other systems is
a common problem. Often, dedicated service announcement
and discovery protocols, such as the Service Location Pro-
tocol [1], are deployed. However, these protocols induce
communication overhead and additional complexity. This
may contradict specific deployment goals, e. g. in energy-
constrained sensor networks. Hence, it would be beneficial
to provide a service announcement and discovery mechanism
without having to rely on a dedicated protocol.

IPv6’s large address size [2] holds great potential to encode
information about services provided by a system. If systems
encode their local services into their IPv6 address directly,
other systems can extract network-wide services “on-the-fly”
from the IPv6 network traffic. This, for example, enables pro-
active caching of information about services in the network.
In this paper we propose different mechanisms to encode
service information into the host part of the IPv6 address.
We then exemplarily show how this information can be used
for in-band service announcement and discovery without
incurring additional overhead.

II. ENCODING SCHEMES

A. Bitwise Encoding

If the overall number1 of possible services is ≤ 62, the
host part of the IPv6 address can be used to directly encode
provided services of a system. Every service in the globally
defined service list S = {s1, . . . , s62} is assigned a dedicated
bit, defined as 2i−1 for service si. A system encodes the
set of services {sx, sy, . . . , sz} it wants to announce as its
IPv6 address host part by concatenating 2x−1|2y−1| . . . |2z−1

through a bitwise OR operator. Figure 1 shows an example
of the bitwise encoding for two arbitrary services that each

1Considering “universal/local” and “individual/global” bits [2].

map towards one specific bit. As the service list S is
globally defined, every system can extract the set of services
announced by a system through the host part of its IPv6
address.

Service ID1 Service ID2
Local Service Set

1 2

…

3 4 5 64

0 0 0 0 0 0 00 1 0

6 6362616059

10

1 2 3 4 5 646 6362616059

0 64 128

Bitwise Service AnnouncementGlobal Routing Prefix + Subnet ID

0 64 128

Figure 1. Bitwise service encoding of two network services.

In case two systems on the local network announce the
same set of services, they may end up with identical IPv6
addresses. By using the IPv6 duplicate address detection
mechanism the systems check whether the IPv6 address is
already in use. In this case they can randomly encode an
additional service they actually do not provide. Requests for
such a service will eventually be denied, resulting in small
additional overhead in the network but still providing the
benefits of a simplified service announcement scheme.

B. Bloom Filter-based Encoding

While typically the set of services provided by a single
system is rather small, the overall pool of possible services
can be large. Bitwise encoding is, however, inherently very
limited with respect to the pool size. In this section we
describe how Bloom Filters [3] can be used to encode service
information for a potentially larger pool size, such as IANA’s
“Protocol and Service Names Registry”.

A Bloom Filter is a probabilistic data structure that
supports element insertion and query. Given a bit array
B = {b1, . . . , bm} of size |B| = m, the Bloom Filter uses
k hash functions H = {h1, . . . , hk} with hi(·) 7→ [1,m] to
insert an element sj from a universe S = {s1, . . . , sn} by
setting ∀hi ∈ H : B[hi(sj)] = 1. An element sj is queried
from the Bloom Filter by testing whether all required bits
B[hi(sj)] of all hash functions hi ∈ H are set to 1. Bloom
Filters allow storage of elements in a very compact form,
and irrespective of the original size of an element |si|. Their
probabilistic nature results in false positives, but no false
negatives. I. e., if an element was inserted, it is successfully
queried. However, an element may be successfully queried,
although it was never inserted. This false positive probability
can be approximated as pfalse ≈ (1 − e−kn/m)k. Given m

and n, the optimal number of hash functions is k = m
n ln 2.

With pfalse, the number of bits needed in the Bloom Filter
for encoding an element si is ln(1/pfalse)/ ln

2(2).
In our proposal, the lower 62 bits of the IPv6 address are

used to store the Bloom Filter, i. e. m = 62, as depicted
in Figure 2. Given an optimal number of hash functions
k = m

n ln 2, the false positive probability for n services
equals to pfalse = 2−62·ln(2)/n. Obviously, only a relatively
small number of services can be stored in the Bloom Filter
with an acceptable false positive probability. However, we
believe that encoding of 10 services—resulting in a false
positive probability of ≈ 5%—can be considered enough for
most scenarios. This results in an average of 6.2 bit required
per element encoding. As rule of thumb, the Bloom Filter
encoding only makes sense if the overall pool of services
S is large, false positives are acceptable, and the original
representation of a service si requires more bits than in a
Bloom Filter approach, i. e. |si| > ln(1/pfalse)/ ln

2(2).

Service ID Service ID Local Service SetService ID1 Service ID2
Local Service Set

h1 hk
…h2

Hash Functions

h1(X),h2(X),…,hk(X) Hashed Values

1 2

…

3 4 5 64

0 0 0 1 0 0 01 1 1

6 6362616059

11

1 2 3 4 5 646 6362616059

Bloom Filter

0 64 128

Bloom Filter-based Service AnnouncementGlobal Routing Prefix + Subnet ID

0 64 128

Figure 2. Bloom Filter-based encoding of two network services.

In contrast to the bitwise encoding scheme, IPv6 address
collision can be prevented in advance using the Bloom Filter
encoding mechanism. In order to prevent end systems from
choosing the same IPv6 address, every end system encodes
its own network card MAC address into the Bloom Filter.
This represents a unique “service” that only the system itself
announces. As MAC addresses are unique, this insertion
results in a unique pattern in the IPv6 address with high
probability.

III. APPLICABILITY AND USE CASES

In this section, we give three exemplary use cases for the
proposed service encoding scheme.

A. Pro-active Service Caching in LANs

For IPv6-enabled Local Area Networks (LANs), service
encoding can be used supplementary to already deployed ser-
vice announcement protocols. In this case a system can learn
about available services in the network by simply collecting
IPv6 addresses during operation. The gained information can
then be cached pro-actively for existing service discovery
mechanisms. In a LAN environment where—besides IPv6
addresses—also the MAC addresses are known, the MAC
address can be used as additional information to only allow

systems inside the LAN to decode services from an IPv6
address. When encoding services, a system uses its MAC
address for seeding the Bloom Filter’s hash functions. De-
coding can then only be performed by systems that know the
corresponding MAC address of the system. Such a scheme
can further be extended by using secret keys as seeding for
the hash functions. This way, only authorized systems are
allowed to take part in the service discovery.

B. Sensor Network Service Discovery

Sensor networks are subject to strong resource constraints.
In such environments dedicated service announcement and
discovery protocols introduce a significant overhead. Using
the presented service encoding scheme, sensors listening to
the network traffic can collect IPv6 addresses on the fly
and use the encoded service information to construct a local
service repository. In face of a service request that reaches
a sensor by accident—e. g. a Bloom Filter’s false positive—
sensors attach the IPv6 address to the request and forward it
to a device they assume to provide this service, based on their
local service repository. This iterative forwarding mitigates
the drawback of false positives by coupling false positive
probabilities and hence finding a valid service provider in a
small number of steps.

C. Peer Sampling in Overlay Networks

In overlay networks “peer sampling” modules are often
deployed to collect sets of other peers in the overlay and
query information about those peers [4]. Depending on the
metrics for subsequent peer selection, useful information can
be encoded into the IPv6 addresses of peers. This allows
early discarding of irrelevant peers from the sampling process
and prevents unnecessary communication overhead with such
peers.

IV. SUMMARY AND CONCLUSIONS

While service discovery and announcement are imple-
mented at higher layers of the protocol stack, the large
address space of IPv6 addresses allows to directly embed
service information. In this paper we presented two schemes
how such information can be encoded considering differ-
ent scenarios and constraints. We illustrated the proposed
mechanisms and their applicability by three different use
cases. While the proposed approach does not require ex-
isting protocols to be adapted, it should be tuned to the
specific application, e. g. to handle false positives in service
announcements.

REFERENCES

[1] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol, Version 2,” RFC 2608 (Proposed Standard), Jun. 1999, updated
by RFC 3224. [Online]. Available: http://www.ietf.org/rfc/rfc2608.txt

[2] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” RFC 2460 (Draft Standard), Dec. 1998, updated by
RFC 5095. [Online]. Available: http://www.ietf.org/rfc/rfc2460.txt

[3] B. H. Bloom, “Space/time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[4] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen,
“The Peer Sampling Service: Experimental Evaluation of Unstructured
Gossip-based Implementations,” in Proceedings of ACM/IFIP/USENIX
International Conference on Middleware, Toronto, Canada, Oct. 2004,
pp. 79–98.

