
OverArch: A common architecture for structured
and unstructured overlay networks

Ingmar Baumgart, Bernhard Heep, Christian Hübsch
Institute of Telematics

Karlsruhe Institute of Technology (KIT)
Zirkel 2, D–76131 Karlsruhe, Germany

Email: {baumgart, heep, huebsch}@kit.edu

Amos Brocco
Department of Innovative Technologies,

University of Applied Science of
Southern Switzerland (SUPSI)
Email: amos.brocco@supsi.ch

Abstract—There exists a variety of different peer-to-peer (P2P)
protocols to support a wide range of distributed services, such as
content distribution or data storage. In order to promote interop-
erability and facilitate the development of new P2P applications,
common application programming interfaces (APIs) have been
proposed. Unfortunately, most of these interfaces have stagnated,
and fail to meet present research or business requirements. In this
regard, this paper presents a novel common architecture and API
which combines structured and unstructured overlay networks
and strives to overcome the limitations of previous architectures.
Our work defines a set of generalized components that are
common in today’s P2P systems, and provides a clean interface
that facilitates the rapid development of new P2P applications
and services. We validate the proposed architecture by presenting
a concrete implementation including a broad range of protocols
within the P2P simulator OverSim.

I. INTRODUCTION

Even in the early days of peer-to-peer (P2P) systems,
researchers and developers realized that a common application
programming interface (API) was necessary to foster the
creation of innovative solutions while simplifying comparison
between systems developed by independent parties.

An important step in this direction was made with the defini-
tion of a Common API for structured peer-to-peer overlays [1]
(in the following called Dabek API), which laid down a path
toward interoperable applications, protocols and services. That
effort focused on a layered architecture composed of basic
building blocks: each block implements a clear semantic and
supports high-level abstractions to facilitate the development
of applications running on structured peer-to-peer overlays.
The Dabek API has been adopted by several projects (e.g.
[2]) in the past. Currently there is also a strong interest
from the industry to have such well-defined common building
blocks, which helps to rapidly develop novel P2P applications.
The IETF currently supports this demand and works on the
standardization of a modular P2P protocol [3].

Over time, research has led to the development of improved
techniques for solving common problems such as routing and
content delivery. In the light of this evolution, the afore-
mentioned protocol architecture exhibits many shortcomings
that undermine applications’ portability and interoperability,
by forcing developers to cut corners around known API
limitations. Through our experience with the implementation
of several P2P protocols on the OverSim framework [4], we
identified several directions for improving the Dabek API.

Accordingly, in this paper we present a novel architecture
named OverArch and a corresponding programming interface
focusing on a broad range of P2P overlay networks. Our
solution strives to overcome the limitations of previous pro-
posals by presenting a unified interface for both structured
and unstructured topologies. The proposed approach is based
on a modular architecture which exposes several high-level
primitives to provide services such as Key Based Routing
(KBR), Key-independent Message Dissemination (KIMD), Dis-
tributed Data Storage (DDS), and Application Layer Multicast
(ALM). Each component is accessible through a clean interface
which hides the details of the underlying implementation. In
addition, we propose to modularize the KBR component itself
and identify reusable building blocks like routing or timeout
handling.

The remainder of this paper is organized as follows: in the
following section the shortcomings of the Dabek API will
be discussed. In Section III OverArch is presented, followed
by the interface description in Section IV and the modular
KBR component in Section V; a validation of our approach
is presented in Section VI. Section VII gives an insight on
other efforts toward the definition of a common API for P2P
systems; finally, Section VIII summarizes our work.

II. SHORTCOMINGS OF THE DABEK COMMON API

The Dabek API [1] was an important first step towards a
generic and flexible P2P architecture. Especially the concept
of separation between routing (KBR) and storage (DHT) had
a great influence on further P2P systems. On the other hand
the scope of the API is limited to structured P2P systems,
which disregards the large group of unstructured proposals.
Another shortcoming is the strict layered architecture, that is
too inflexible for current complex P2P systems.

A major concern is the imprecise definition of overlay
neighbors. There is no clear separation between the used terms
neighbor set, replica set and r-roots. For an efficient and
secure distributed storage service, it is e.g. desirable to have
a symmetric neighborhood relationship for storing replicas,
which is not covered by the r-root definition of the Dabek
API.

Additionally there are many details, which turn the Dabek
API unsuitable for specific protocols or applications: e.g. the
proposed range() method cannot be realized with Kadem-
lia’s [5] XOR-based distance metric. Another limitation is

Global Internet Symposium 2012

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2534

Underlay Connection

UDP/TCP

disseminate()
forward()

route()
deliver()
forward()

get()
put()
query()

multicast()
anycast()
receive()

KBR

ALM DDS

send() receive() nodeFailure()

Overlay Connection Manager

ge
tB

o
o

ts
tr

ap
N

o
d

e
()

B
o

o
ts

tr
ap

 O
ra

cl
e

OverArch Applications

KIMD

joinGroup()
leaveGroup()

Fig. 1: Modular overlay architecture OverArch: Building
blocks, service components, and interfaces

the focus on recursive routing (e.g. there is no method for
iterative lookups). Finally, the Dabek API details just the KBR
interface, providing only stubs for the remaining interfaces,
like distributed storage or application layer multicast.

III. A MODULAR ARCHITECTURE FOR OVERLAY SYSTEMS

For defining an architecture for P2P systems that covers the
functionality of structured and unstructured overlay protocols
as well as overlay services like ALM and distributed data
storage, we identified components of today’s common P2P
systems. These components can be considered as exchangeable
building blocks or “black boxes” providing well defined APIs
to other components and user applications. By assembling a
subset of these components depending on the requirements
of a new P2P application this modular approach supports and
eases its development. An example for this could be a Content
Distribution Network (CDN) [6] which allows for an efficient
distribution of (large) data objects. The CDN application might
use the DDS component to locate other users that hold missing
parts of requested data objects.

Fig. 1 gives an overview of OverArch. The main building
blocks are the Underlay Connection which provides basic
connectivity through TCP/UDP, the Overlay Connection Man-
ager holding information about all overlay nodes known to
the local node, the Bootstrap Oracle for encapsulating the
utilized bootstrapping routine, and the service components
KBR, KIMD, ALM, and DDS.

An advantage of this modular architecture is the fact that
it can be either considered as a layered or a component
based architecture, i.e. connections between components are
not limited by a strict layer architecture. This enables to
have several applications, which make use of the same KBR

component or to have a common Bootstrap Oracle compo-
nent which is connected to several components like KBR or
DDS. P2P applications based on this architecture are free to
choose concrete protocols that realize the service components
according to its requirements.

Before detailing the identified components and their APIs
we define the most important terms and data structures:

• NodeIds / Keys: NodeIds and keys are elements of the
same id space Z2m with a distance metric assigned to in
order to determine distances between its elements. Usual
choices for m are 128 or 160, which results in a low
risk for collisions with randomly selected nodeIds. While
nodeIds are assigned to every node in the overlay network
as unique identifiers, keys generally represent objects.

• Transport Address: The transport address of a node X
contains all necessary data (e.g. IP address and UDP port)
to address the node in the underlay network.

• Node Handle: The node handle of an overlay instance X
comprises a transport address and an additional nodeId
corresponding to the specified node. Node handles are
used as entries in overlay routing tables representing
neighbors in the overlay network.

• Overlay Neighbor: An overlay node Y is neighbor of
a node X , if there is a direct connection in the overlay
topology from X to Y , i.e. Y is an entry of X’s overlay
routing table.

IV. COMPONENTS AND INTERFACES

In the following, we introduce the identified main building
blocks and service components and describe their interfaces.

A. Overlay Connection Manager
Basically, the Overlay Connection Manager maintains a list

of all overlay nodes known to the local node including its
neighbors in the overlay. This ensures consistency as entries
in the service components’ routing tables are always pointers
into this list. Furthermore, this list holds common information
about the overlay nodes. This comprises the nodes’ node
handles, their uptime, their physical network distance given
by e.g. the Round-Trip-Time (RTT), detected node failures, and
information for NAT traversal. Node failures might be detected
by the service components which provide this information to
the Connection Manager using the nodeFailure() method.

By using a transport address as destination address a com-
ponent is able to address an overlay instance on a specific
overlay node. Moreover, since all messages that are sent
between overlay nodes pass the Overlay Connection Manager,
components on an overlay node are addressable: the Con-
nection Manager acts as a multiplexer by setting the source
component field (srcComp) of outgoing messages and using
the destination component fields (destComp) of all incoming
overlay messages to decide to which component the message
is forwarded.

B. Bootstrap Oracle
The Bootstrap Oracle provides the transport addresses of

potential bootstrap nodes to all service components. For this,
the component that needs to know a bootstrap node calls
the getBootstrapNode() method. Since the mechanism used

2535

to retrieve these transport addresses is hidden, the Oracle can
abstract various possible bootstrap mechanisms like probing
or web-based bootstrapping.

C. Key-based Routing
The Key-based Routing (KBR) component provides efficient

message forwarding to keys over a structured overlay topology
(e.g. ([7], [8], [5], [9]).

The KBR component provides the route() method to for-
ward a message msg to the node, which nodeId is closest to
the destination key according to the distance metric. For this
purpose, each node maintains a routing table that holds entries
of overlay neighbors. Each routing table entry consists of at
least one node handle.

In [1] the KBR service is used as building block for a
distributed storage system called distributed hash table (DHT).
In order to improve the availability of the stored data items
such a storage system stores several replicas of all data items
on different overlay nodes. The closest nodes to the keys of
data items are particularly suitable for storing these replicas.
To ease the implementation of a robust DHT, we introduce the
concept of siblings described later.

In the following we give an overview of our KBR interface
and compare it to the Dabek KBR interface [1].

• route(key, destComp, msg, [srcRoute], routingMode)
The method route() forwards the message msg via several
routing hops (if required) to the node which is closest
to the destination key. The parameter destComp is used
for addressing the destination component (e.g. DDS or
ALM) in case that several components are connected to
the KBR component. In contrast to our component-based
architecture the Dabek API employs a strict layer-based
approach and supports only a single service above the
KBR layer, which we consider too inflexible.
Another aspect neglected by the Dabek API is an option
to specify several next hop candidates or even a com-
plete source route. This is supported by our API with
the srcRoute parameter, containing a (optional) list of
transport addresses. Finally the routingMode parameter
offers a choice between different routing modes (e.g.
semi-recursive, full-recursive or iterative).

• 〈 result, error 〉 ← isSiblingFor(node, key, s)
The method isSiblingFor() is used to verify, if a given
node is a so called sibling for the given key. Siblings are
the s closest nodes to a key, determined by the metric of
the id space. The set of nodes, which are responsible
for a key key , is named Sskey in the following (with
|Sskey | = s). The method isSiblingFor() replaces the
method range() of the Dabek API, since the functionality
of range as described in [1] can not be provided with
some structured overlay protocols (e.g. Kademlia [5]).
In contrast to the so called r-roots defined in the Dabek
API, our siblings define a symmetric neighbor relation-
ship. This means, that a node which belongs to the closest
s nodes to a given key knows all other (s - 1) closest
nodes for the key by querying its local routing table.
The sibling neighborhood is an important concept for
providing a secure and efficient distributed storage service
(see section IV-E).

The Boolean return value result is true if the given node
is a sibling for the given key. If the local node cannot
unambiguously determine if node is a sibling, this is
indicated by the Boolean return value error.

• siblings[] ← lookup(key, s, routingMode)
The method lookup() is used to determine the s siblings
for the given key using several routing hops if required.
The parameter routingMode specifies the applied routing
mode. The method returns a list of node handles sorted
by the distance to key.
The Dabek API does not offer a similar method. We con-
sider lookup() an important method when using iterative
routing modes, since it enables to efficiently get a list of
all siblings for a key. This list can be used e.g. by the
DDS component to directly contact all replica nodes for a
key, which is more secure then routing a single message
through the main replica node.

• nodes[] ← getClosestNodes(key, r, s)
The method getClosestNodes() returns a list of node
handles of the r closest known nodes for destination key
from the local routing table. If the method is called on
node X with X ∈ Sskey , the s siblings for key are returned.
For s = r = 0, this method returns a complete dump of
the local routing table.
The getClosestNodes() method replaces the three meth-
ods local lookup(), neighborSet() and replicaSet() of the
Dabek API with a single method.

• success ← join([nodeId])
By calling join() the local node joins the overlay with the
optionally given nodeId. The specification of a dedicated
nodeId is e.g. needed when using cryptographically se-
cured nodeIds (e.g. [10]) or when using topology-based
nodeId assignment. The Dabek API in contrast only offers
that the nodeId is generated by the overlay itself.

• s ← getMaxNumSiblings()
The method getMaxNumSiblings() returns the maximum
number of available siblings. This depends on the em-
ployed routing protocol and is usually parameterizable
by increasing the routing table size.

• → deliver(key, srcComp, srcNode, msg)
This upcall delivers the message msg at the addressed
destination component of the node responsible for key.
Additional information include the originator of the mes-
sage (srcNode) and the source component (srcComp).

• → forward(*key, destComp, srcComp, srcNode, *msg)
This upcall is used at every node on the routing path
to the destination key to inspect and (optionally) modify
a passing message msg by all attached components.
forward() can also change the destination key.

• → update(node, joined)
By calling the update() method in all connected com-
ponents, the KBR component signals a change in the
sibling neighborhood of the local node. If the parameter
joined has the value true, the node node has joined the
sibling neighborhood. Otherwise the node has left the
sibling neighborhood. This notification is e.g. used by
the DDS component to trigger the transfer of replicas to
new siblings.

2536

D. Key-independent Messages Dissemination
The Key-independent Message Dissemination (KIMD) com-

ponent provides message dissemination to other overlay nodes
over an unstructured overlay topology ([11], [12]). For this,
each overlay node connects to other nodes—its neighbors—
chosen by protocol-specific criteria (e.g. network load, number
of neighbors). Dissemination is either done by flooding the
overlay network or by performing (biased-)random walks.

In the following we give an overview of our KIMD inter-
face:

• disseminate(msg, destComp, fanOut, htl)
A node calls the disseminate method if it wants to
send a message msg to all other nodes in the overlay
network. The fanOut parameter can be considered as the
flooding multiplicator of the procedure, i.e. it determines
the number of neighbors the message is forwarded to
at each node. If set to 1, a random walk is performed.
The htl parameter (hops to live) determines the maximum
number of hops for a single message. A KIMD-message’s
header comprises a hop count field initialized by the value
of htl. At each node the message passes the hop count
field is decreased. If the hop count reaches zero the KIMD
component drops the message.

• → forward(*msg, destComp, srcComp, originator
lastHop, *fanOut, hopCount, *htl)

This upcall method is triggered when a node receives a
message so that the called component (or application)
can interpret the message and react in an appropriate
way. For this, the transport address of the message’s
originator, the message’s lastHop, and the configured
fanOut parameter are passed to the component. Then,
the component decides whether the message is dropped
or the dissemination continues. If so, the component may
optionally modify msg, fanOut and htl.

• neighbors[]← getNeighbors()
addNeighbor(neighbor)
removeNeighbor(neighbor)
These methods give access to the managed overlay neigh-
borhood by the KIMD component. It is possible to dump
the complete neighborhood (getNeighbors()), add a single
neighbor (addNeighbor()), and remove specific nodes
from the overlay’s neighborhood (removeNeighbor()).

Based on the KIMD component a gossiping service can be
realized by calling the dissemination() method periodically.

E. Distributed Data Storage
The Distributed Data Storage (DDS) component stores data

objects, which are identified by a key and additional meta
information, like e. g. an index. A DDS service can be realized
either on top of a KBR or a KIMD component. If using a KBR
component, this service is commonly known as distributed
hash table (DHT), which allows to efficiently retrieve a data
record according to its key. A DDS service on top of a KIMD
component instead uses flooding or random walk to find stored
data records according to some filtering criteria.

The DDS component provides the following interface:
• put(key, value, ttl, [metainfo], [filter])

The method put() stores a data object with a given key

and value. The parameter ttl specifies the time-to-live
in seconds, after which a stored object gets deleted. An
object may have additional metainfo like an index, which
can be used to store several objects with the same key.
If there are already stored data objects with the given
key and their metainfo matches the given filter, these
objects get replaced by the new object. If value is empty,
a matching object gets deleted.

• 〈value[], metainfo[]〉 ← get(key, [filter], [node])
The get() method retrieves data objects, which match the
given key and an optional filter on metainfo. It is also
possible to query only data objects, which are stored on
a specific node. The method returns a list containing the
value and corresponding metainfo of all found objects.

• nodes[] ← query(key, [filter])
The query() method is similar to the get() method, but
returns only a list of nodes which store matching data
objects, instead of returning the data objects themselves.
This is useful if the DDS operates over an unstructured
overlay network, in which a query gets flooded and
reaches several nodes with matching data objects. If data
objects are large, it is more efficient in this case to return
only a pointer to these nodes and get the actual object
later by using get().

F. Application Layer Multicast

The Application Layer Multicast (ALM) component pro-
vides multicast and anycast services on application layer.
Either ALM services build up their own unstructured over-
lay [13] to send messages to groups of nodes or they make
use of a KBR (e.g. [14]) or a KIMD component (e.g. [15]).
The ALM component provides the following interface:

• success ← joinGroup(group)
A node wishing to join a specific ALM group calls
joinGroup(), providing the specific group’s ID group. A
group always comprises all nodes that have previously
joined it. A group’s ID is represented by an unique
key, e. g. being a group’s name as a string or a hash
value from that string. In case a node joins an empty
group (comprising no further nodes), it is considered this
group’s initiator.

• success ← leaveGroup(group)
Leaving a group results in the node being removed from
the respective ALM structure. By calling leaveGroup(),
a node stops receiving data from that group instantly.

• multicast(msg, group)
To send a message to a specific group, a node provides
the message and the group ID to the method multicast().
Multicasting a message to a group results in the message
being delivered to every node being part of the group.

• anycast(msg, group)
Besides multicasting data, a node can may also send a
message to a single arbitrary node in the group by calling
anycast(). This functionality has to be provided by the
ALM protocol for the specific use case.

• → receive(msg, group)
A node having joined a group will receive any message
that is sent to this group via the receive() callback.

2537

KBR

Routing
Table

Routing /
Lookup

Signaling / Maintenance

ge
tB

o
o

ts
tr

ap
N

o
d

e
()

getClosestNodes()
isSiblingFor()

route()
deliver()
forward()

send()
receive()

sendRpcCall()
handleRpcCall()
handleRpcResponse()
handleRpcTimeout()

localLookup()
isSiblingFor()

nodeFailure()

RPC Handling

Fig. 2: Internal architecture and interfaces of the modular KBR
component

V. MODULAR KBR ARCHITECTURE

In Sec. IV-C we described the KBR API that is offered by
the KBR component to other components and applications. In
this Section we introduce our approach for a modular architec-
ture of a generic KBR component, including a specification of
its sub-modules and internal interfaces. The insights expressed
with this approach were gained during the implementation of
several KBR protocols for the OverSim simulation framework,
i.e. the KBR functionality implemented in OverSim is based
on the proposed architecture.

As shown in Fig. 2 the modular KBR component comprises
four modules:

• RPC Handling: The Remote Procedure Call Handling
module handles all issues regarding messages that are
sent (calls) for which response messages are expected.
These issues include message context maintenance, time-
out handling and message retransmission (if required).
Node failures detected on the basis of missing response
messages are notified to the Overlay Connection Manager
by calling nodeFailure(). RPC Handling is not necessarily
part of the KBR component, i.e. it can be considered as a
core mechanism of OverArch usable by all other service
components, the Bootstrap Oracle, and the applications.
In OverSim the RPC module is implemented in an ab-
stract base class all components can derive from.

• Routing and Lookup: This main module of the KBR
component organizes all routing and lookup procedures
the local node is involved in. When an application initi-
ates a recursive routing procedure (by calling route()) or
when the node receives a message that is addressed to a
given destination key, this module first asks the routing
table if the local node is responsible for the destination
key (by calling isSiblingFor(thisNode,key,s))). If so, the
message is passed to the component addressed in the
message (by calling deliver()). If not, the module asks the

routing table for potential next hop candidates to forward
the message to (by calling getClosestNodes(key,r,s)).
For iterative lookup procedures the module sends out (one
or more) getClosestNodesCalls (using the RPC Handling
module) to nodes from a vector v. This vector contains
nodes sorted by the distance to the lookup key and is
initialized by a local call of getClosestNodes(key,r,s).
The Lookup/Routing modules at the receiver nodes send
back getClosestNodesResponses that contain lists of close
nodes to key (compiled by getClosestNodes()). These
nodes are merged into v and new getClosestNodesCalls
are sent out to the first nodes of v that have not contacted
yet. This procedure is repeated until the responsible node
for key is identified.

• Routing Table: This module holds the overlay routing
table structure, i.e. it represents the node’s neighborhood
in the overlay network. As it is an abstract module, its
concrete implementation is determined by the utilized
overlay protocol. However, to maintain consistency all
entries must be pointers into the overlay node list held by
the Overlay Connection Manager component. The Rout-
ing Table module offers a protocol-independent interface
to external components and other KBR-internal modules.
The interface comprises the methods isSiblingFor() and
getClosestNodes() as described in Sect. IV-C.

• Signaling and Maintenance: The protocol-dependent
Signaling and Maintenance module is responsible for
maintaining the routing table. For this, it performs re-
active or periodic tasks, i.e. sends signaling messages to
other overlay nodes or routes signaling messages to keys
that are determined by the utilized overlay protocol. For
doing this, the RPC module can be used if required.

By decoupling the routing table and the routing/lookup mech-
anisms this architecture allows for the usage of different
recursive and iterative routing/lookup modes independent of
the utilized overlay protocol. Another benefit of this approach
is the fact that for implementing new protocols the main
routing/lookup module and the RPC handling can be reused.
Only the protocol-dependent routing table and the maintenance
module have to be implemented.

VI. VALIDATION

To validate our architecture, we successfully implemented
several structured (e.g. Chord [7], Kademlia [5], Pastry [8],
Bamboo [9], Broose [16], Koorde [17]) and unstructured over-
lay protocols (e.g. GIA [12], NICE [13]) as well as a common
DDS component in our simulation framework OverSim [4]. It
has been shown that all of these protocols fit very well into the
OverArch architecture (only Chord showed a small limitation,
since it does not provide symmetrical siblings).

Additionally, we implemented an ALM-based application
based on the service provided by the Scribe [14] ALM
component. Scribe in turn uses Pastry as KBR component. We
also successfully implemented more complex P2P applications
like the P2PNS [18] distributed name service or a distributed
service for massively multiplayer online gaming.

In addition to internal usage, the API is also exposed by
OverSim with an XML-RPC interface to external applica-
tions and can be used similar to the XML-RPC interface of

2538

OpenDHT [19]. All these implementations are published as
open-source project (http://www.oversim.org/).

VII. RELATED WORK

Beside the already described Dabek API [1] for structured
P2P networks, there are several other proposals for common
application programming interfaces, which restrict themselves
to specific instances of P2P services, such as DHTs [19],
ALM [20], publish subscribe [21][22], or focus on cross-layer
concerns to fulfill the needs of mobile networks [23]. To our
knowledge there is no common API which has been shown
to be suitable for both, structured and unstructured overlay
networks.

VIII. CONCLUSION

Standardized application programming interfaces (APIs) are
meant to promote consistency, reduce programmer’s learning
curve, and ease porting of applications. In the area of dis-
tributed systems a well known example is the Dabek API [1],
which dates back to 2003. Unfortunately, today’s protocols
and services have exposed several shortcomings of this API,
such as the missing support for unstructured protocols, an
incomplete API for distributed storage or ALM and finally
an inflexible layer-based approach. These deficiencies greatly
narrow the scope of the Dabek API, and substantially hinder
the development of truly interoperable distributed applications.

In this paper we presented our effort to define a new
standard for the rapid development and prototyping of novel
P2P applications, which resulted in a modular and flexible
architecture made of exchangeable blocks that implement
comm‘on functionalities of today’s P2P systems. In particular,
we detailed the most important terms and data structures used
by the components and their APIs, show the feasibility to
modularize the KBR component in smaller building blocks and
finally validated our work by presenting the implementation of
several structured and unstructured overlay protocols, as well
as complex P2P applications in our OverSim framework.

In the future we plan to include other overlay-based ser-
vices (e.g. content distribution networks like BitTorrent) in
the OverArch architecture and define a common format for
overlay messages to provide interoperability between different
OverArch-based systems.

REFERENCES

[1] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a Common API for Structured Peer-to-Peer Overlays,” in Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
vol. 2735/2003, Berkeley, CA, USA, Feb. 2003, pp. 33–44.

[2] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and R. Rallo,
“Planetsim: A new overlay network simulation framework,” in Software
Engineering and Middleware, vol. 3437/2005, 2005, pp. 123–136.

[3] C. Jennings, B. B. Lowekamp, E. Rescorla, S. A. Baset, and
H. Schulzrinne, “Resource location and discovery (reload),” IETF
Internet-Draft, work in progress, draft-ietf-p2psip-base-19, Oct. 2011.

[4] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 2007, pp. 79–84.

[5] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Peer-to-Peer Systems: First
International Workshop (IPTPS 2002). Revised Papers, vol. 2429/2002,
Cambridge, MA, USA, Mar. 2002, pp. 53–65.

[6] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent
P2P File-Sharing System: Measurements and Analysis,” in Peer-to-Peer
Systems IV, ser. Lecture Notes in Computer Science, M. Castro and
R. van Renesse, Eds. Springer, 2005, vol. 3640, pp. 205–216.

[7] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for Internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17–32, Feb. 2003.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Mid-
dleware 2001 : Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms, vol. 2218/2001, Heidelberg, Germany,
Nov. 2001, pp. 329–350.

[9] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a
DHT,” in ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, Boston, MA, USA, Jun./Jul. 2004, pp.
127–140.

[10] I. Baumgart and S. Mies, “S/kademlia: A practicable approach towards
secure key-based routing,” in Proceedings of the 13th International
Conference on Parallel and Distributed Systems (ICPADS ’07), Hsinchu,
Taiwan, Dec. 2007, pp. 1–8.

[11] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in First International Conference on Peer-to-Peer Computing (P2P’01).
Linkpings, Sweden: IEEE Computer Society, Aug. 2001, pp. 99–100.

[12] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like P2P systems scalable,” in SIGCOMM ’03: Pro-
ceedings of the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications. Karlsruhe,
Germany: ACM Press, Aug. 2003, pp. 407–418.

[13] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast,” in SIGCOMM ’02: Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications. Pittsburgh, Pennsylvania, USA: ACM
Press, 2002, pp. 205–217.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp.
1489–1499, Oct. 2002.

[15] M. Ripeanu, A. Iamnitchi, I. T. Foster, and A. Rogers, “In Search of
Simplicity: A Self-Organizing Group Communication Overlay,” in 1st
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO ’07), Boston, MA, USA, Jul. 2007, pp. 371–374.

[16] A.-T. Gai and L. Viennot, “Broose: a Practical Distributed Hashtable
based on the De-Bruijn Topology,” in Fourth International Conference
on Peer-to-Peer Computing (P2P 2004), Zurich, Switzerland, Aug. 2004,
pp. 167–174.

[17] M. F. Kaashoek and D. R. Karger, “Koorde: A Simple Degree-Optimal
Distributed Hash Table,” in Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), vol. 2735/2003, Berkeley,
CA, USA, 2003, pp. 98–107.

[18] I. Baumgart, “P2PNS: A Secure Distributed Name Service for P2PSIP,”
in Proceedings of the Sixth Annual IEEE International Conference on
Pervasive Computing and Communications (PerCom 2008), Hong Kong,
China, Mar. 2008, pp. 480–485.

[19] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “Opendht: a public dht service and its uses,” in
SIGCOMM ’05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications.
Philadelphia, PA, USA: ACM Press, Aug. 2005, pp. 73–84.

[20] M. Wählisch, T. C. Schmidt, and G. Wittenburg, “A Common API for
Hybrid Group Communication,” in Proc. of the 34th IEEE Conference
on Local Computer Networks (LCN), M. Younis and C. T. Chou, Eds.
Piscataway, NJ, USA: IEEE Press, October 2009, pp. 265–268.

[21] M. Demmer, K. Fall, T. Koponen, and S. Shenker, “Towards a modern
communications api,” in Proceedings of the Sixth Workshop on Hot
Topics in Networks (HotNets-VI), Atlanta, Georgia, USA, Nov 2007.

[22] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand, “Towards a common
API for publish/subscribe,” in Proceedings of the 2007 inaugural inter-
national conference on Distributed event-based systems, ser. DEBS ’07.
Toronto, Ontario, Canada: ACM Press, 2007, pp. 152–157.

[23] F. Delmastro, M. Conti, and E. Gregori, “P2P Common API for
Structured Overlay Networks: A Cross-Layer Extension,” in Proceedings
of the 2006 International Symposium on on World of Wireless, Mobile
and Multimedia Networks, ser. WOWMOM ’06. Niagara-Falls, Buffalo-
NY, USA: IEEE Computer Society, Jun. 2006, pp. 593–597.

2539

