
Fast but economical: A simulative comparison of
structured peer-to-peer systems

Ingmar Baumgart and Bernhard Heep
Institute of Telematics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Email: {baumgart,heep}@kit.edu

Abstract—In the past many proposals for structured peer-to-
peer protocols have been published. They differ in properties like
overlay topology and routing table maintenance. Furthermore,
each protocol exhibits various parameters e.g. to adjust the size
of the routing table or stabilization intervals, making it difficult
to choose an optimal protocol and parameter set for a given
scenario (e.g. churn rate, number of nodes). For this purpose,
we developed the overlay simulation framework OverSim and
implemented six well known structured overlay protocols. In
this paper we first compare these protocols among each other.
Furthermore, we study several recursive and iterative routing
variants and show the effect of routing table redundancy and
lookup parallelism on routing latency and bandwidth costs. For
each overlay protocol we identify an optimal parameter set for
a typical peer-to-peer scenario. Finally, we show how overlay
protocols adapt to variations in churn rate and network size. Our
results show considerable advantages of the protocols Kademlia
and Bamboo, while De Bruijn based protocols reveal a lack of
stability under churn.

I. INTRODUCTION

Structured P2P systems enable the fast and cost efficient
deployment of new services. Now that such P2P applications
get actually deployed in the wild, the analysis of these overlay
protocols gets even more important. Many different structured
P2P systems —often denoted as Distributed Hash Tables
(DHTs)— have been proposed. These protocols’ basic service
for applications is a so called Key-based Routing service
(KBR). KBR protocols differ in several properties like overlay
topology and routing table maintenance. Additionally, each
protocol has several tunable parameters e.g. for maintenance
intervals or routing table sizes. To make it worse most
published evaluation results for these protocols are based on
individual protocol implementations, making it difficult to
compare the protocols’ different structures or routing table
maintenance strategies. With OverSim [1], we developed a
simulation framework that helps to unify the behavior of
KBR protocol implementations by extracting their common
functions and put them into shared components and classes
(e.g. routing, retransmission handling, bootstrapping) [2].

The contribution of this paper is as follows: We present a
comprehensive comparison of several state of the art struc-
tured KBR protocols using our unified simulation framework
OverSim in order to achieve a fair comparison. By means
of simulations we are able to identify the optimal parameters
of these protocols in a realistic P2P scenario. Afterwards, to
evaluate scalability and reliability, we compare delivery ratio,
bandwidth consumption and lookup latency of the mentioned
protocols in different churn scenarios with varying numbers
of nodes using the previously identified parameters. The

simulation framework OverSim is published as an open-source
project, thus the presented results can easily be reproduced
and new P2P systems can be compared to today’s common
protocols with low effort.

The rest of the paper is organized as follows: In Section
II we give a survey of related work covering analytical and
simulative comparison of structured P2P systems. Section III
focuses on implementation details of the covered KBR proto-
cols. The utilized performance vs. cost evaluation framework
(PVC) and the settings of the simulations are summed up in
Section IV. The results are discussed in Section V and the
paper ends with our conclusion in Section VI.

II. RELATED WORK

There is a large number of publications (e.g. [3]–[7]) which
analyze and compare various overlay topologies. But all these
publications neglect the effects of churn and the complex be-
havior of the involved stabilization mechanisms. Rhea et al. [8]
compared the two protocols Chord and Bamboo in scenarios
with churn using a local testbed with a network emulator. The
most comprehensive simulation study in networks with churn
so far by Li et al. [9] includes the protocols Kademlia, Kelips,
Chord, Tapestry and OneHop. In contrast to previous work
the authors consider the mutual influence of overlay protocol
parameters. This study is extended by Damm et al. [10] by an
evaluation of the Viceroy protocol.

Our work addresses several limitations of these studies:
First, the popular protocols Pastry, Bamboo, Broose and Ko-
orde have not been considered in [9]. To our knowledge we are
the first that evaluated the more recent constant node degree
protocols Broose and Koorde in networks with churn. Second,
in our work the communication costs for overlay signaling
traffic were measured exactly on the basis of complete protocol
implementations1 – in [9] communication costs were only
estimated according to the number of included IP addresses
and nodeIds per signaling message. Compared to [9] we also
used a more detailed underlay model which considers the
delay of signaling messages due to queuing effects in the
sender queues. Finally, our studies were done with 10,000
overlay nodes in contrast to only 1024 nodes in [9]. Using
only 1024 nodes can hide several stabilization problems when
using typical protocol parameters2.

1In addition to simulations the protocol implementations were also verified
in Planet-Lab experiments.

2E.g. even with a completely broken finger table, Chord still allows to reach
all nodes by only following the successor lists if the network is sufficiently
small.

III. KEY-BASED ROUTING PROTOCOLS

The P2P protocols we compare in this paper all provide
a key-based routing service (KBR) [2] to the application. To
evaluate the various KBR protocols, we implemented them
for our overlay simulation framework OverSim [1]. In the
following, only remarkable features of these protocol imple-
mentation are described. The protocols’ basic operation and
different variants covered in this paper are specified in the
corresponding publications.

A. Chord

We extended Chord [11] by the aggressive join mode, where
the receiver of a JOIN call
• sets his predecessor pointer to the joining node
• puts his old predecessor as a hint in the response
• sends a new successor hint message to his old predecessor

that updates his successor list
The joining node immediately sets his predecessor according
to the hint in the join response message.

To provide redundancy in the finger table, an extended finger
table for Chord was implemented as proposed in [11]. Here,
a node that receives a fix fingers call returns his complete
or part of its successor table. These nodes are probed and
put into the call initiator’s finger table in addition to the
responding node. The next time a message has to be routed
to this finger entry, the candidates’ nodeIds as well as their
proximity are considered for the next hop selection (Proximity
Routing (PR) [12]).

B. Koorde

OverSim’s implementation of Koorde corresponds to the
original proposal in [13].

C. Pastry

The implementation of Pastry supports the original proto-
col [14] and the new version [15]. Node failures are detected
by missed acknowledgements. These acks are sent by all nodes
on the routing path to the last hop. A neighbor cache is utilized
to reduce probe traffic and, in contrast to the original proposal,
iterative lookups are supported.

D. Bamboo

For the calculation of RPC timeouts in Bamboo [8] [16], the
usage of network coordinate systems is proposed. For a better
comparability to other KBR protocols, this was deactivated for
our simulations.

E. Kademlia

To prevent a loss of information about the k closest nodes
to the current node, bucket splitting in a special way is
proposed in [17]. In our implementation a special k-bucket,
the sibling table, holds the s closest nodes with respect to the
XOR metric. This way, all s closest nodes (= siblings) are
kept in one bucket. Instead of the exhaustive iterative lookup
procedure of the original Kademlia protocol, we introduce
a simple iterative mode where lookups terminate when a
node asked for close nodes to a destination key x knows all
the k closest nodes to x (including the asked node itself).

Additionally, a new parameter r is used to determine the
number of returned nodes in a FIND NODE response message
independently of k (usually with r < k).

F. Broose
A node in a Broose [18] network needs to determine the

network size. In OverSim, a node that wants to join the
network sends 2b B BUCKET REQUESTS via its bootstrap
node to different destination keys in order to receive the B-
buckets of the responsible nodes. The nodes from the received
B-buckets are used to fill up the joining node’s R-buckets.
Then L BUCKETS REQUESTS are sent to the new R-bucket
entries. With all the collected nodes, the network size can be
estimated.

IV. EVALUATION METHOD

The evaluation methodology of this paper is based on
the performance vs. cost evaluation framework (PVC) [9].
There, two challenges in evaluating structured P2P systems
are addressed:
• How can you quantify cost and performance for protocols

that are tunable by means of more aggressive routing table
maintenance, parallel lookups, more intensive searching
for low latency neighbors, etc.?

• How can a parameter’s impact on efficiency be judged?
PVC uses two metrics to define the performance of struc-

tured P2P systems: the average latency of successful routing
procedures and their failure rate. To combine these met-
rics, failed routing attempts are counted as successful with
a latency that equates to the routing timeout (10 seconds
in our case). PVC simulates KBR protocols with different
parameter combinations. The results are plotted with average
bandwidth usage on the x-axis and median latency on the y-
axis. Each data point in a plot represents a dedicated parameter
combination. Two types of convex hulls can be sketched into
a plot: The overall convex hull to determine the most efficient
parameter combinations and the parameter convex hull to
evaluate whether a particular parameter is more important
than others according to the performance/cost tradeoff. For the
overall convex hull, all parameter combinations are considered,
for parameter convex hulls, the parameter of interest is fixed
and all the others are varied. Data points inside the convex
hulls represent suboptimal parameter combinations and are
omitted in the following plots to increase readability.

In the following, we describe our simulation setup: All sim-
ulations were done with our overlay framework OverSim [1].
For the underlay we have chosen the SimpleUnderlayModel,
which provides typical Internet latencies and supports model-
ing of queuing effects. For the simulation of churn, nodes are
assigned a Weibull distributed session time with shape k = 0.5
and a mean lifetime and deadtime of 10, 000 seconds. This
resembles the churn behavior that has been observed in the
KAD file-sharing network [19] [20]. In Chapter V-D the mean
lifetime (and deadtime) is varied between 100 and 100,000
seconds. On each node a test application periodically performs
a lookup on a random nodeId of currently alive nodes using
a truncated normally distributed interval with a mean of 60
seconds. Uniformly distributed 160 bit nodeIds were used for
all protocols.

Each protocol is evaluated with different parameter combi-
nations in a network of 10,000 nodes, each with 10 MBit/s
access bandwidth we consider as typical medium access
bandwidth of hosts in the Internet nowadays. Jitter with a
variance of 10% of the unchanged coordinate-based delay
is applied. The different routing modes are compared using
Chord and Kademlia. Churn rates are varied using the optimal
parameter settings from the simulations before. This is done
with 10,000 simulated nodes. The protocols were finally tested
on scalability using different network sizes between 10 and
20,000 nodes.

V. RESULTS

In the following, we present the simulation results for the
KBR protocols described above. For each protocol, a table
of varied parameter values is attached, where the parameter
combination is highlighted that is used for further evaluations
(s. Sect. V-B, V-C, V-D, and V-E). All following plots show
averaged values of multiple runs with 99% confidence inter-
vals. Some results are presented without plots due to the lack
of space.

A. Choosing optimal protocol parameters
1) Chord: The size of the successor list plays only a

minor role in achieved routings latencies (figure omitted). It is
obvious that a successor list size with more than two entries
is needed for a stable network. Larger successor lists increase
redundancy for routing decisions under churn. No significant
difference in performance is noticeable between a successor
list size of 8 and 16, except for parameter combinations with
higher bandwidth consumption: From 250 bytes/s upwards,
lower latencies are achieved with a successor list size of 16.

Fig. 1(a) shows the results with varying stabilize intervals.
As varying the stabilization interval only affects nodes in the
successor list, no remarkable effect on routing latencies can be
observed, due to the fact that the successor list is usually used
for the last hop only. Hence, a fixed value of 30 seconds is
preferable, due to less maintenance traffic needed. In Fig. 1(b)
the fix fingers interval was altered, which turned out to be
an important parameter for Chord. A value of 240 seconds
is appropriate, as smaller values lead to more traffic with no
significant impact on lookup latency.

For the check predecessor interval, a value of 30 seconds
appears to be a reasonable value, as no significant difference
to shorter intervals can be recognized (figure omitted). The
effect of enabled proximity routing with different values of
alternative fingers is illustrated in Fig. 1(c). Basically, about
half as high latencies can be achieved by using PR. Higher
values than 8 for the number of alternative fingers do not
significantly lead to lower latencies as in churn scenarios the
last entries in successor tables are often outdated.

TABLE I: Parameter values for Chord

Parameter Value
Successor list size 4, 8, 16, 32
Stabilization interval 10 s, 30 s, 90 s
Fix fingers interval 30 s, 120 s, 240 s, 480 s
Check predecessor interval 10 s, 30 s, 60 s
Size of extended finger table 0, 1, 4, 8, 16

2) Koorde: Fig. 2 shows the results for Koorde. In our
experiments the size of the De Bruijn list was set equal to
the size of the successor list, since the list of De Bruijn nodes
is built by using the successor list of the node preceding the De
Bruijn pointer. The effect of the De Bruijn and successor list
sizes is shown in Fig. 2(a). Using larger lists than succ = 16
nodes leads to bad performance, since then most entries are
invalid. This is due to the fact that Koorde needs up to
succ stabilize intervals to refresh the complete successor list.
Fig. 2(b) shows that the stabilize interval is more important
for Koorde as for Chord, since the successor and De Bruijn
lists are the main routing table. In Chord the routing mainly
involves the finger table and the successor list is only used in
the last hop.

As shown in Fig. 2(c) shifting more than one bit at each
routing step clearly shortens the lookup latency. One problem
with Koorde is that it is hard to setup the De Bruijn pointers
in large networks if the network is bootstrapped very fast. If
too many nodes do not have a valid De Bruijn pointer and fall
back to their successor lists for routing, De Bruijn stabilize
requests get lost due to exceeded hop count limits.

TABLE II: Parameter values for Koorde

Parameter Value
Size of successor list 8, 16, 32
Stabilization interval 10 s, 30 s, 60 s
De Bruijn interval 30 s, 120 s, 480 s
Bits per digit b 1, 2, 4, 6
Check predecessor interval 10 s, 30 s, 120 s

3) Pastry: Fig. 3 shows Pastry’s results. In Fig. 3(a) Pastry
in its original version is compared with the second proposal
using periodic tasks and no second stage. The original version
is evaluated with different values for the Neighborhood Set
size. The results attest the advantages of the newer proposal
in latency as well as in bandwidth consumption. The original
version achieves lower latencies only with unacceptable high
bandwidth consumption due to its expensive joining procedure.
A bigger neighborhood set just increases the amount of traffic.

Although Pastry was proposed with a value of 4 bits per
digit, Fig. 3(b) shows that when using a value of 2 or 4, no
lower latencies can be achieved unless with a huge amount of
additional traffic. With higher values for b, nodes are probed
less often leading to higher latencies in churn scenarios due
to failed nodes in the routing table. Leaf Set sizes of 4, 8,
16, and 32 were fixed in Fig. 3(c). Due to the exchange of
complete states between nodes in a Pastry network, this pa-
rameter has a significant influence on bandwidth consumption
while latencies only differ marginally. Though not proposed,
Pastry was simulated with iterative routing mode as well (not
illustrated here), the results show significant higher latencies in
iterative mode compared to recursive mode. As no redundancy
was provided in find node response messages, iterative lookups
often aborted due to node failure.

4) Bamboo: Fig. 4 illustrates Bamboo’s results. Fig. 4(a)
shows the convex hulls for different numbers of bits per digit.
Contrary to Pastry, a value of 2 leads to very small latencies
without a significant higher bandwidth consumption. As in
Pastry, higher values just lead to a higher traffic amount. Like

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 80 100 120 140 160 180 200 220 240 260

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

stab=10
stab=30
stab=90

(a) Chord stabilize interval (s)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 100 200 300 400 500 600 700 800

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

fix=30
fix=120
fix=240
fix=480

(b) Chord fix fingers interval (s)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 50 100 150 200 250 300 350 400

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

Chord w/o PR
Chord PR, ext=1
Chord PR, ext=4
Chord PR, ext=8

Chord PR, ext=16

(c) Chord proximity routing

Fig. 1: Chord with parameter convex hulls

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 40 60 80 100 120 140 160 180

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

succ=8
succ=16
succ=32

(a) Koorde De Bruijn and succ. size

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 40 60 80 100 120 140 160 180

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

stab=10
stab=30

stab=120

(b) Koorde stabilize interval (s)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 40 60 80 100 120 140 160 180

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

bits=1
bits=2
bits=4
bits=6

(c) Koorde shifting bits

Fig. 2: Koorde with parameter convex hulls

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 200 400 600 800 1000 1200 1400 1600

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

Pastry (new)
Pastry (old, n=0)
Pastry (old, n=8)

Pastry (old, n=16)

(a) Pastry old vs. new / neighbors

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

bits=1
bits=2
bits=4

(b) Pastry bits per digit

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400 600 800 1000 1200

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

leafs=4
leafs=8

leafs=16
leafs=32

(c) Pastry leaf set size

Fig. 3: Pastry with parameter convex hulls

TABLE III: Parameter values for Pastry

Parameter Value
Leaf Set size 4, 8, 16, 32
Neighborhood Set size / Version 0 (new), 0 (old), 8 (old),16 (old)
Bits per digit b 1, 2, 4

Pastry, Bamboo does not need a high number of leafs in its
leaf set under typical churn. Our results show that 8 leafs are
enough to keep the network in a stable state (figure omitted).

In Fig. 4(b) the leaf set maintenance task interval was
altered. As shown, an interval of 60 seconds is fair enough
to keep the leaf set consistent.

The Local Tuning interval has marginal effect on lookup
latencies (figure omitted). Best results are achieved with in-
tervals of 4 or 10 seconds. If it is set to 150 seconds, higher

latencies must be faced. The significant impact of different
Global Tuning intervals is shown in Fig. 4(c). As expected,
this also periodically triggered mechanism decreases latencies
without high costs. A value of 60 seconds is adequate, if
lower latencies are requested and bandwidth consumption of
more than 100 Bytes/s are acceptable, a value of 10 should be
chosen.

TABLE IV: Parameter values for Bamboo

Parameter Value
Leaf Set size 4, 8, 16, 32
Leaf Set maintenance interval 4 s, 15 s, 60 s, 240 s
Local Tuning interval 4 s, 10 s, 30 s, 150 s
Global Tuning interval 10 s, 60 s, 300 s, 600 s
Bits per digit b 1, 2, 4, 8

 0.25

 0.3

 0.35

 0.4

 0.45

 50 100 150 200 250 300 350 400 450

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

bits=1
bits=2
bits=4
bits=8

(a) Bamboo bits per digit

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 50 100 150 200 250

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

leafSetMaint=4
leafSetMaint=15
leafSetMaint=60

leafSetMaint=240

(b) Bamboo leaf set maint. interval (s)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 50 100 150 200 250 300

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

globalTuning=4
globalTuning=10
globalTuning=60

globalTuning=300

(c) Bamboo global tuning interval (s)

Fig. 4: Bamboo with parameter convex hulls

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160 180

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

rpcs=1
rpcs=3
rpcs=5

(a) Kademlia parallel RPCs

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 40 60 80 100 120 140 160 180

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

k=4
k=8

k=20
k=40
k=80

(b) Kademlia k

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

red=2
red=4
red=8

red=20

(c) Kademlia number of red. nodes

Fig. 5: Kademlia with parameter convex hulls

5) Kademlia: The results of Kademlia’s simulations are
shown in Fig. 5. Our evaluation showed that the parameter b
(bits per digit should have a value of 1 to get the best perfor-
mance as well as the lowest bandwidth consumption (figure
omitted). Increasing the value of k (shown later) is always
better than a high value for b. In Fig. 5(a) different numbers
of parallel RPCs were simulated. The lookup latencies can
obviously be decreased by sending more than one RPC at the
same time, as only one node must be alive and respond to
continue the lookup. Additionally, responses from physically
closer nodes are received earlier which accelerates the lookup
procedure. As a matter of course, using parallel RPCs comes
with an increased amount of traffic.

The bucket size k was altered for Fig. 5(b). A considerable
difference between a value of 4, 8 and 20 is noticeable. With
values of 40 or 80, better results can be achieved concerning
lookup latencies. As there is no periodically triggered stabi-
lization protocol, larger routing tables do not lead to more
stabilization traffic. The impact of altering the numbers of
redundant nodes—the nodes which are returned in a find node
response message—is shown in Fig. 5(c). Here, best results
are achieved with a value of 8. A value of 20 redundant nodes
only lead to lower latencies using a minimum of 200 Bytes/s.
Combined with the results shown in Fig. 5(b), using a value
r < k is apparently reasonable to achieve low latencies while
keeping the lookup traffic small.

The results for the bucket refresh interval are presented
without Figure. As the test application used for the simulations
periodically sends probe messages to random destination keys,

most buckets are refreshed by application triggered lookups.
When using an interval of 4,000 seconds, no stabilization
lookups are performed at all due to a sufficient number of
application triggered lookups. An interval of 1,000 seconds
seems to be a good compromise in this simulation scenario
to keep the buckets up-to-date. Shorter intervals do not have
any positive effect in this particular scenario, rather they come
with higher costs.

TABLE V: Parameter values for Kademlia

Parameter Value
Bucket size k 4, 8, 20, 40, 80
Number of returned nodes per hop r 2, 4, 8, 20
Bits per digit b 1, 2, 4
Bucket refresh interval 100 s, 1000 s, 4000 s
Number of parallel lookups α 1, 3, 5

6) Broose: Broose has a very expensive join process since
a joining node queries the nodes at the joining location for
the complete routing table contents. Since the number of bits
per digit directly influences the routing table size, a large
number of bits per digits leads to even higher communication
for the join process (see Fig. 6(a)). Unlike in Kademlia
routing tables in Broose are very restricted. Therefore a large
bucket is mainly needed for redundancy (like the successor
list in Chord) and can not be used to reduce the number of
routing steps. As shown in Fig. 6(b) a bucket size larger than
k = k′ = 8 does not improve lookup performance in the
evaluated churn scenario. Due to the exhaustive join process
Broose can not benefit from its constant node degree and needs
even more bandwidth than Kademlia with O(logN) buckets.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

bits=2
bits=3
bits=4

(a) Broose shifting bits

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100 200 300 400 500 600

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

k=4
k=8

k=16

(b) Broose bucket size

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

rpcs=1
rpcs=3
rpcs=5

(c) Broose parallel RPCs

Fig. 6: Broose with parameter convex hulls

Like with Kademlia the number of parallel RPCs plays a
major role on lookup performance. As shown in Fig. 6(c)
increasing the number of parallel RPCs to 5 significantly
decreases lookup latencies with only a very moderate increase
in bandwidth.

TABLE VI: Parameter values for Broose

Parameter Value
Bucket size k and k′ 4, 8, 16
Bits per digit b 2, 3, 4
Bucket refresh interval 30 s, 60 s, 300 s
Number of parallel lookups α 1, 3, 5

B. Routing variants
In Fig. 8(a), all the routing modes that are applicable for

Chord were compared. No proximity routing is applied. As
expected, the semi-recursive routing mode achieves lowest
latencies by far. All recursive modes show better results than
the iterative alternative without redundancy. Due to the fact
that full-recursive routing in Chord means to go around the
whole ring always, source-routing-recursive mode is slightly
faster. The impact of activated redundancy in iterative mode
is noteworthy, as similar results in lookup latencies com-
pared to source-routing-recursive and full-recursive mode are
achieved. Fig. 8(b) shows the effect of acknowledgement in
recursive routing mode using Chord (without PR). Apparently,
acknowledgements are essential for recursive routing in churn
scenarios and do not come with increased bandwidth con-
sumption. The difference between iterative and exhaustive-
iterative lookups is shown in Fig. 8(c) using the Kademlia
protocol, as only Kademlia supports both modes. As expected,
the exhaustive mode —originally proposed in [17]— is much
more expensive concerning bandwidth consumption. As all
potential siblings have to be contacted, lookup latencies in
exhaustive mode are about 10 times higher.

C. Protocol comparison
Fig. 7 shows all simulated protocols with parameters opti-

mized for this network scenario. While Bamboo and Kademlia
show the best performance/cost tradeoff, Chord can not keep
up even in recursive routing mode using proximity routing.
Iterative Chord suffers from very high latencies, while Broose
shows a lack of stability. For efficient routing Broose needs
a precise estimation of the network size, which can only

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300
L

a
te

n
c

y
 [

s
]

Bandwidth per node [bytes/s]

Bamboo
Broose

Chord iter
Chord rec
Kademlia

Koorde
Pastry

Fig. 7: Comparison of KBR protocols with optimal parameters

be achieved by sending additional messages. Koorde cannot
compete at all as a result of its longer routing paths. This
results in a poor performance/cost tradeoff for both De Bruijn
based protocols. Pastry only achieves low latencies combined
with high bandwidth consumption.

D. Churn

In this section, the best parameter configurations identified
in the simulations before were fixed, while the nodes’ lifetime
mean was altered. Fig. 9(a) shows the KBR delivery ratio of all
protocols under different churn rates. Pastry achieves success
rates of about 85%, even under extreme churn (100 s lifetime
mean), while Bamboo, and Kademlia come with success ratios
of 60%. Due to its expensive joining procedure, Pastry’s
routing tables stay up-to-date in high churn scenarios. Chord
shows stability from 1,000 seconds lifetime mean upwards.
Koorde achieves only 75% in scenarios with 10,000 seconds
lifetime mean of nodes.

In Fig. 9(b) the bandwidth consumption of all protocols is
shown under different churn rates. Here, Pastry produces im-
mense traffic under nearly all churn rates due to its expensive
joining procedure. Kademlia has an even higher traffic amount
as Pastry, but only under extreme churn. Bamboo shows con-
stant small traffic as a result of its periodic tasks and minimal
node arrival operation. Chord shows an average bandwidth
consumption, but does not stabilize under high churn. Koorde
also collapses under high churn, so the bandwidth results have
no significance.

The measured lookup latencies of successfully delivered

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300 350 400

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

iterative (red.)
iterative (w/o red.)

semi-recursive
source-routing-recursive

full-recursive

(a) Recursive routing (Chord)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 40 60 80 100 120 140 160 180 200 220

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

ack=false
ack=true

(b) Acknowledgements (Chord)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500

L
a

te
n

c
y

 [
s

]

Bandwidth per node [bytes/s]

iterative
exhaustive-iterative

(c) Iterative vs. exhaustive-iterative (Kademlia)

Fig. 8: Routing modes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000

L
o

o
k

u
p

 s
u

c
c

e
s

s
 r

a
ti

o

Mean lifetime [s]

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(a) Delivery ratio under churn

 0

 200

 400

 600

 800

 1000

 1200

 100 1000 10000 100000

B
a

n
d

w
id

th
 p

e
r

n
o

d
e

 [
b

y
te

s
/s

]

Mean lifetime [s]

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(b) Bandwidth under churn

 0

 1

 2

 3

 4

 5

 6

 100 1000 10000 100000

L
a

te
n

c
y

 o
f

s
u

c
c

e
s

s
fu

l
lo

o
k

u
p

s
 [

s
]

Mean lifetime [s]

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(c) Latency under churn

Fig. 9: Comparison of KBR protocols under different churn settings with 10,000 nodes

messages are plotted in Fig. 9(c). Kademlia and Bamboo both
achieve very small latencies—even under churn—due to the
use of proximity neighbor selection (PNS) or parallel RPCs,
respectively. While Pastry and Chord show acceptable results,
Koorde collapses under high churn rates, which was previously
shown in Fig. 9(a): Nodes have no up-to-date De Bruijn list,
thus routing must be done inefficiently using the successor list.

E. Scalability
In this section all protocols are tested for scalability in

scenarios with 10 - 20,000 nodes. Like in the last section,
the best parameter configurations identified in the simulations
before were fixed, while the total number of nodes was altered.
Fig. 10(a) shows the results for KBR delivery ratio. All
protocols deliver messages reliably, regardless of the network
size.

In Fig. 10(b) the bandwidth consumption is shown. All
protocols show a nearly logarithmic increase of network traffic
per node. Bamboo shows the best scalability, while Pastry
cannot keep up due to its strongly increasing traffic amount.
Kademlia and Chord show acceptable results. Fig. 10(c) shows
logarithmic increase of lookup latency for all protocols except
for Koorde. Broose and Kademlia show the lowest latencies in
small networks due to their large routing tables. Both protocols
have a higher increase of latencies with larger numbers of
nodes, though.

F. Summary of Results
The most remarkable results of our simulations can be

summed up as follows:

• Bamboo and Kademlia show the best results regarding
lookup latencies and bandwidth consumption. Bamboo
benefits from proximity neighbor selection, acknowledge-
ments and periodic maintenance. Kademlia achieves its
best results with our proposed simple iterative routing
mode using several parallel RPCs instead of using the
exhaustive-iterative mode.

• For Kademlia an increased bucket size k in combination
with a small number r of returned nodes leads to lower
latencies while keeping the maintenance traffic small.

• Chord and especially Pastry show only average results
and they do not have any benefits over Bamboo – still
they are widely proposed as basis for new P2P protocols
(e.g. the new RELOAD Internet draft [21] for distributed
VoIP is based on Chord).

• A high number of parallel sent RPCs in iterative lookups
significantly decreases lookup latencies. As closer nodes
(in terms of proximity) send their responses earlier,
this can be considered as kind of proximity routing for
iterative lookups. In this way iterative Kademlia can catch
up with recursive Bamboo in medium sized networks.
Although security aspects were not in our focus, it should
be noted that Kademlia’s iterative lookups might have
security benefits compared to recursive routing.

• Protocols based on De Bruijn graphs like Koorde and
Broose cannot keep up with the other protocols due to
problems to maintain the topology under churn.

• In recursive routing mode, the usage of acknowledgement
messages has high impact on lookup latencies. Further-

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 100 1000 10000

L
o

o
k

u
p

 s
u

c
c

e
s

s
 r

a
ti

o

Number of nodes

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(a) Delivery ratio vs. network size

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000

B
a

n
d

w
id

th
 p

e
r

n
o

d
e

 [
b

y
te

s
/s

]

Number of nodes

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(b) Bandwidth vs. network size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 100 1000 10000

L
a

te
n

c
y

 o
f

s
u

c
c

e
s

s
fu

l
lo

o
k

u
p

s
 [

s
]

Number of nodes

Bamboo
Broose
Chord

Kademlia
Koorde
Pastry

(c) Latency vs. network size

Fig. 10: Comparison of KBR protocols under different network sizes with 10,000s mean lifetime

more, the importance of periodically triggered routing
table maintenance processes decreases, as failed nodes
are mostly detected during lookup procedures.

VI. CONCLUSION

In this paper we compared six state of the art KBR protocols
using our simulation framework OverSim. Many protocol
parameters were analyzed in terms of influence on perfor-
mance and bandwidth costs. We compared several iterative and
recursive routing modes and the usage of acknowledgements
for KBR routing. Finally, all protocols were evaluated in
different churn scenarios and tested for scalability.

Overall, Kademlia and Bamboo show the best performance
vs. cost tradeoff, where Kademlia highly benefits from the
usage of faster iterative lookups compared to the original
proposal. Both De Bruijn based protocols show a lack of
stability, in particular in high churn and large-scale scenarios.

We hope that the results presented in this paper and
our open-source simulation framework OverSim will help
researchers and designers of P2P systems to choose the
right protocol and to tune its parameters according to their
requirements and network characteristics.

REFERENCES

[1] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, May 6–12, 2007, pp. 79–84.

[2] I. Baumgart, B. Heep, C. Hübsch, and A. Brocco, “OverArch: A
common architecture for structured and unstructured overlay networks,”
in Proceedings of the 15th IEEE Global Internet Symposium in con-
junction with IEEE INFOCOM 2012, Orlando, FL, USA, Mar. 2012.

[3] D. Loguinov, J. Casas, and X. Wang, “Graph-theoretic analysis of
structured peer-to-peer systems: routing distances and fault resilience,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1107–1120, Oct. 2005.

[4] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The Impact of DHT Routing Geometry on Resilience
and Proximity,” in Proceedings of the ACM SIGCOMM ’03 conference,
Karlsruhe, Germany, 2003, pp. 381–394.

[5] D. Stutzbach and R. Rejaie, “Improving Lookup Performance Over a
Widely-Deployed DHT,” in Proc. 25th IEEE International Conference
on Computer Communications INFOCOM 2006, Barcelona, Catalunya,
Spain, Apr. 2006, pp. 1–12.

[6] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in Proceedings
of the 1st USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’04), San Francisco, California, USA, Mar. 2004.

[7] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey
and Comparison of Peer-to-Peer Overlay Network Schemes,” IEEE
Communications Survey and Tutorial, vol. 7, pp. 72–93, 2005.

[8] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a
DHT,” in ATEC ’04: Proceedings of the annual conference on USENIX
Annual Technical Conference, Boston, MA, USA, Jun./Jul. 27–2, 2004.

[9] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn,” in 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM 2005), vol. 1, Miami, FL,
USA, Mar. 13–17, 2005, pp. 225–236.

[10] N. I. Damm, D. Fahrenholtz, and V. Turau, “On Fluctuation Resilience
of Second Generation Distributed Hash Tables,” in Kommunikation in
Verteilten Systemen (KiVS 2007), T. Braun, G. Carle, and B. Stiller, Eds.,
2007, pp. 105–110.

[11] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for Internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17–32, Feb. 2003.

[12] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting network
proximity in distributed hash tables,” in International Workshop on
Future Directions in Distributed Computing (FuDiCo), Bertinoro, Italy,
Jun. 3–7, 2002, pp. 52–55.

[13] M. F. Kaashoek and D. R. Karger, “Koorde: A Simple Degree-Optimal
Distributed Hash Table,” in Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), vol. 2735/2003, Berkeley,
CA, USA, 2003, pp. 98–107.

[14] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Mid-
dleware 2001 : Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms, vol. 2218/2001, Heidelberg, Germany,
Nov. 12–16, 2001, pp. 329–350.

[15] M. Castro, P. Druschel, and Y. C. Hu and Antony Rowstron, “Topology-
Aware Routing in Structured Peer-to-Peer Overlay Networks,” Microsoft
Research, Redmond, WA, Tech. Rep. MSR-TR-2002-82, 2002.

[16] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn
in a DHT,” EECS Department, University of California, Berkeley, CA,
USA, Tech. Rep. UCB/CSD-03-1299, Dec. 2003.

[17] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Peer-to-Peer Systems: First
International Workshop (IPTPS 2002). Revised Papers, vol. 2429/2002,
Cambridge, MA, USA, Mar. 7–8, 2002, pp. 53–65.

[18] A.-T. Gai and L. Viennot, “Broose: a Practical Distributed Hashtable
based on the De-Bruijn Topology,” in Fourth International Conference
on Peer-to-Peer Computing (P2P 2004), Zurich, Switzerland, Aug. 2004.

[19] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” in IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, Rio de Janeiro, Brazil, Oct. 25–27,
2006, pp. 189–202.

[20] M. Steiner, T. En-Najjary, and E. W. Biersack, “Long Term Study of Peer
Behavior in the KAD DHT,” IEEE/ACM Transactions on Networking,
vol. 17, no. 6, pp. 1371–1384, Oct. 2009.

[21] C. Jennings, B. B. Lowekamp, E. Rescorla, S. A. Baset, and
H. Schulzrinne, “Resource location and discovery (reload),” IETF
Internet-Draft, work in progress, draft-ietf-p2psip-base-18, Aug. 2011.

