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ABSTRACT
User traces are essential for analysis of human behavior and
development of opportunistic networking protocols and ap-
plications. As user traces are collected with high granularity
to apply them in diverse scenarios, they have a high com-
plexity resulting from the large number of user states.

We present MobReduce: a methodology for reducing the
number of states in user traces. We apply MobReduce to in-
dividually to GPS locations and WiFi sightings of the Nokia
Mobile Data Challenge data set and show how to trade off
state complexity vs. granularity.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks, Network com-
munications, Network topology, Store and forward networks,
Wireless communication

General Terms
Algorithms, Experimentation

Keywords
Trace, Mobility, State Reduction

1. INTRODUCTION
The rise of mobile devices has enabled a multitude of novel

applications. Such applications exploit the mobility that de-
vices are exposed to through their human owner to perform
opportunistic communication when in mutual proximity [6].
They allow, e. g., to offload traffic from infrastructure-based
networks with the help of opportunistic communication be-
tween mobile devices [8, 2, 13], or exploit physical contacts
for social communication. The basis for the development of
such applications is an understanding of the mobility and
social characteristics exposed by the human owner upon the
mobile device. Collection of mobility data has become essen-
tial for researching such characteristics [15], and extracting
mobility and social patterns. In case of the mobility location
patterns those have shown to follow a power-law behavior
in inter-contact times[5, 10], as well as in the number of
place visits [7, 12]. This indicates that a large number of
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places are visited very often. Reducing the data of such of-
ten visited places to one single state is the underlying idea
of MobReduce.

Data is collected deliberately very general and fine-grained
in experiments. This allows to apply the collected data
in very different analysis. When analyzing the behavior
through the collected trace it is beneficial to work with a
reduced number of states to increase manageability. In this
work we consider two cases of traces:
• Mobility traces are made up of GPS samples of multi-

ple users collected over time. In this raw form, every
GPS sample is considered one state.
• Mobility traces made up of WiFi sightings of multiple

users collected over time. In this case, the definition
of one state is more complex and detailed later.

Our methodology MobReduce transforms the set of states of
multiple users into a common set of states for all users that
is reduced in size. The goal of MobReduce is to transform a
mobility trace into a manageable form that can be used as
the basis for analysis, e. g. for analytical models like Markov
chains.

This paper is structured as follows: Section 2 presents
our methodology MobReduce for reducing state complex-
ity of mobility traces. In Section 3 and Section 4 we apply
MobReduce first to the GPS location and then to the WiFi
trace collected within the Nokia Mobile Data Challenge [11].
We show how MobReduce can be applied to such traces and
how to trade off the size of the state set vs. the granularity
of the mobility behavior. Related work is presented in Sec-
tion 5. Finally, Section 6 summarizes and gives an outlook
on future work.

2. MOBREDUCE: MOBILITY STATE RE-
DUCTION

We first describe a formalism for modeling user states and
then present the MobReduce algorithm to perform state re-
duction. The algorithm is applied to both GPS traces and
WiFi traces in Section 3 and Section 4, respectively. Sym-
bols used in this work are listed in Table 1. Note, that we
name a trace that contains several behavior like mobility,
phone status etc. generally user trace. The part of the trace
that contains location information and describes mobility
behavior of users is named mobility trace.

We consider a user trace M = {U1, U2, . . . , Un}d of n mo-
bile users. Ud

i denotes the recorded user trace of one user i
in dimension d of the trace. Dimensions make up differ-
ent behavior of the user, e. g. location, phone status, mes-
senger status, etc. The trace of one dimension k is de-



Symbol Description
M complete mobility trace
Uk

i mobility trace of user i in dimension k

s
tj
i,k mobility state of user i in dimension k at

time tj
Si,k mobility state set of user i in dimension k
S′k reduced, user-independent state set in dimen-

sion k
rk fuzziness of the reduced mobility states in di-

mension k
∆k(s, s′) state distance function for dimension k

q quality metric

Table 1: Symbols used in MobReduce.

fined as Uk
i =

(
st1i,k, s

t2
i,k, . . . , s

tm
i,k

)
and contains mi states

si,k ∈ Si,k of user i. The trace Uk
i defines the ordering of

occurrences of states and their timestamps. Note, that Uk
i

can contain the same state at different timestamps. Sym-

bol s
tj
i,k determines the state of user i in dimension k at

time tj . Note that in this form of the original trace all
states are user-specific. The state set of the user trace is
M = {U1

1 ∪ U2
1 ∪ . . .∪Ud

1 ∪U1
2 ∪ . . .∪ Ud

n}. The size of M
is the sum of all mi · d states of all n users, denoted

|M | =
n∑

i=1

mi · d (1)

The goal of MobReduce is to transform the trace M =
{U1, U2, . . . , Un}d into a new trace

M ′ = {({U ′1, U ′2, . . . , U ′n}, S′)}d (2)

so that
1. the overall number of states are reduced (|M ′| < |M |),

and
2. the states are common for all users, i. e. MobReduce

performs a surjective mapping (si,d ∈ Sd
i → s′d ∈ S′d).

This reduction step is performed per dimension. Reduc-
tion results in a reduced number of states (|S′d| < |Si,d|)
and a reduced occurrence of time stamped state changes

(|U ′di | < |Ud
i |). Every state has a corresponding dimension-

specific fuzziness rk that describes the accuracy of the state.
Original states si,k have a defined fuzziness of rk = 0 and
are considered the ground truth. States s′k resulting from
the reduction step have a fuzziness rk > 0.

The reduction algorithm is based on [1] and shown in Al-
gorithm 1. A distance function ∆k(si,k, s

′
k) is defined that

compares each si,k ∈ M to the existing s′k ∈ S′k, using the
user defined fuzziness rk. If s lies within s′ ± rk, it is trans-
formed from s to s′. If s is not suitable for all existing states
s′ ∈ M ′, a new state s′k := sk is created. This is prone to
over-fitting if the fuzziness rk is chosen too restrictive. The
distance function ∆k(s, s′) must be defined for each dimen-
sion separately.

2.1 Calculating the quality index
Reducing the number of states results in loss of accu-

racy. We have defined a quality metric to evaluate the effect
of different parameters, i. e. the number of states and the
configuration-specific fuzziness, on the accuracy. We define
Zi

d = {s ∈ Si,d|∃s′ ∈ S′d : ∆d(s, s′) < rd} as all the original
states from user i and dimension d that are transferable to

Algorithm 1 MobReduce algorithm

DimensionsToReduce := {d1, d2, . . .}
FuzzinessPerDimension := {rd1 , rd2 , }
S′ := ∅
for all Ui ∈M do

for all Ud
i ∈ Ui do

if d /∈ DimensionsToReduce then
continue

end if
for all s

tj
i,d ∈ Ud

i do
bestDistance := rd
for all s′d ∈ S′d do

if ∆d(si,d, s
′) < bestDistance then

s′opt = s′

bestDistance := ∆d(s
tj
i,d, s

′)
end if

end for
if bestDistance = rd then

. No suitable state found, create new s′

U ′
d
i := U ′

d
i ∪ s

tj
i,d

S′d := S′d ∪ sji,d
else

. Use s′ with least distance
U ′

d
i := U ′

d
i ∪ s′

tj
opt

end if
end for

end for
end for

the reduced user-independent state set S′d. This version of
the quality index represents the ratio of the number of origi-
nal states that get represented in a reduced state, compared
to the overall number of original states. The quality index
for user i and dimension d is then:

qi,d =
|Zi

d|
|Ud

i |
(3)

Since the fuzziness rd is not represented in qi,d, we define
an extended version of the quality index, using ∆̄i,d as the
average value for the distances between all si,d and their
best matching s′d. It holds 0 < ∆̄d < rd. The closer ∆̄d is
to rd, the worse the overall quality should be valued, due to
the increased average fuzziness. Hence we define the penalty

factor p = 1− ∆̄d
rd

.

The improved quality index for user i and dimension d is:

q∗i,d = qi,d · p =
|Zi

d|
|Ud

i |
·
(

1− ∆̄d

rd

)
(4)

The overall quality index across all users for dimension d
is the arithmetic mean across all users:

qd =
1

n
·
∑
i

qi,d

and respectively for q∗:

q∗d =
1

n
·
∑
i

q∗i,d



(a) Original states (b) Reduced states

Figure 1: Playground with exemplary reduction of
the location states of one user. Every point repre-
sents one location state, irrespective of time.
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Figure 2: Quality of location state reduction, us-
ing qgps.

3. APPLYING MOBREDUCE TO GPS
LOCATION TRACES

We apply the methodology of MobReduce to the Nokia
Challenge Data user trace [11] for the dimension of loca-

tion. Within the dimension of location, a state s
tj
i,loc =

(x, y) describes the position of user i at time tj on a play-
ground1. Fuzziness rloc describes an allowable radius of the
original location state to the new state when performing
the reduction step. The distance function is defined as eu-
clidean distance between the location states as ∆loc(s, s′) =√

(xs − xs′)2 + (ys − ys′)2

In case of location states, Algorithm 1 clusters sets of
nearby location samples to a single location and only re-
gards the arrival and leaving timestamps. This means that
commonly visited locations over all users are extracted. Fig-
ure 1 shows an exemplary location trace reduction: Fig-
ure 1a shows the original location trace of one user. After
applying MobReduce to the traces of all users, the resulting
common state set is shown in Figure 1b.

We performed reduction of the Nokia Challenge Data lo-
cation trace and analyzed the resulting quality metrics in-
troduced in Section 2. Figure 2 shows the quality metrics for
different numbers of states and fuzziness. For quality index
qd, we see that raising both the radius as well as the num-
ber of locations increases the overall quality. The growth in
quality saturates over both the number of states and radius.
Figure 3 shows the same evaluation using the quality metric
q∗d . It can be seen that an increase in the radius size does
not provide continuous quality increase. Rather, at a radius
size of around 1000 m, only an increase in the number of

1For actual transformation we calculate the distance be-
tween the GPS coordinates using the Harvesine formula and
define a 2D playground using the left/right/top/bottom-
most locations.
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Figure 3: Quality of location state reduction, us-
ing q∗gps.

states provides further quality improvements. This suggests
that an optimal setting exists which depends on the mobility
behavior.

In case of the Nokia Challenge Data set our evaluation
indicates that for a radius of 1000 m and only 100 common
states the quality is high enough to reflect the general mo-
bility patterns of the user, while reducing the complexity of
the trace heavily.

4. APPLYING MOBREDUCE TO WIFI
SIGHTINGS

In the following we show how MobReduce can be applied
to traces of WiFi sightings, which in turn can be used to
model user locations2.

It is not our goal to emulate GPS tracking—like e. g. per-
formed in [16, 14]—therefore we do not take WiFi signal
strength into account. Using GPS coordinates results in
an explicit state per timestamp. In contrast, several WiFi
sightings might be possible at one timestamp. Therefore,
it is not possible to define one WiFi sighting as one state.
To model states we cluster WiFi sightings at one timestamp
into one state. Furthermore, we map subsets of WiFi sight-
ings to the original state which is made up of a superset of
corresponding WiFi sightings.

In order to calculate the quality index for WiFi sight-
ing traces q∗wifi, we again require the maximum allowed
fuzziness rwifi, and an average fuzziness ∆̄wifi of reduced
states. The task of defining fuzziness in the context of WiFi
sightings is particularly interesting, since it differs from the
straightforward radius idea that can be applied to GPS co-
ordinates. As we do not take signal strength into account,
a WiFi sighting is a strict binary decision. Note that this
is in contrast to the continuous geographic distance used in
GPS traces.

Each state represents a WiFi cluster, which is a unique
combination of visible WiFis at the same time. We re-
gard the WiFi clusters from S′wifi as supersets, while normal
sightings s ∈ Si,wifi are regarded as subsets. Fuzziness is
defined based on the relative sizes of such subsets. Our def-
inition is based on the assumption that the more WiFis of
a cluster are visible, the closer the user is to the sweet spot
which defines the state. For example, given a WiFi cluster
of {A,B,C} ∈ S′wifi and a sighting of B and C at a given
timestamp (i. e. 2/3 of the state’s cluster), the user is closer
to the state than at a time where only WiFi B is visible (i. e.

2This method is for example used by Google and Apple to
detect a user’s current location without GPS tracking, see
[4] for a comprehensive primer on this subject.
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Figure 4: Quality of WiFi state reduction, us-
ing qwifi.
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Figure 5: Quality of WiFi state reduction, us-
ing q∗wifi.

1/3 of the state’s cluster). Therefore, rwifi is defined via a
minimum fraction f ∈ [0..1] that must be exceeded, where f
is defined as the ratio of visible WiFis during a sighting s to
the WiFi clusters given by S′wifi. Every s ∈ Si,wifi is thus
mapped to the s′ ∈ S′wifi which yields the highest f . If there
exists no s′ where the minimum value for f is exceeded, s is
considered to be outside of the maximum allowed fuzziness.

We use a minimum subset fraction as quality metric, i. e.
we require that a minimum fraction of the WiFi sighting
subset is fulfilled. This corresponds to the maximum al-
lowed radius definition used in Section 3. Using this mini-
mum subset fraction and the number of states, we evaluate
the quality metrics qwifi and q∗wifi shown in Figure 4 and
Figure 5, respectively. The subset fraction employs a “>”
relation, i. e. a minimum subset fraction of 0.0 requires at
least one WiFi sighting of the original cluster. Note, that a
high minimum fraction value is more restrictive, in contrast
to a high radius value that is less restrictive. Therefore, the
x-axis in Figure 4a and Figure 5a are inverted. Both Fig-
ure 4 and Figure 5 show the same characteristics. However,
our quality metric q∗wifi is more restrictive.

Using a high number of states results in linear increase
under a less restrictive subset fraction. Indicating that a
rather high number of states is required for reducing WiFi
traces. The less restrictive the minimum subset fraction is
chosen, the higher is the benefit from a larger number of
states.

Note, that the quality metrics between GPS trace and
WiFi sighting trace can not be easily compared, as the re-
spective fuzziness definitions are not comparable.

5. RELATED WORK
Ashbrook and Starner presented in [1] an approach for re-

ducing fine-grained GPS data to a smaller number of loca-
tions. Those locations are used to perform predictions of fu-
ture movements. In comparison, MobReduce does not solely
focus on GPS data but provides a more general methodology

for state reduction in multi dimensional user traces.
In [9] Hummel and Hess present an approach for GPS-

based movement prediction. While they do not focus on
state reduction, they augment their data with additional
semantic information like “home”, “shopping”, or “evening
location” in order to improve the prediction model. In its
current form MobReduce does not integrate semantic infor-
mation. As such, the work of Hummel and Hess could be
used to extend the MobReduce approach.

6. CONCLUSION AND OUTLOOK
To cope with the large amount of data in user traces we

presented MobReduce. Using clustering MobReduce aggre-
gates and reduces the states to a manageable set, based on a
small number of parameters. We have shown that MobRe-
duce provides a general methodology that we exemplary ap-
plied to GPS traces and traces of WiFi sightings. For both
traces we defined quite different fuzziness and quality met-
rics to integrate them with MobReduce. We analyzed the
complexity vs. granularity trade off in several studies using
those traces. For GPS traces we have shown that there ex-
ists an optimal radius over which the quality can only be
optimized using a larger number of states.

In future work we will compare different clustering algo-
rithms and analyze the behavior of MobReduce for further
dimensions like phone status or messenger status. Our fi-
nal goal is to build multi-dimensional user models with low
complexity. We will use those models to apply them for
the development of opportunistic social networking systems.
This also includes deriving possible social relationships from
multi-dimensional states. For example, if two users are often
in the same location and they appear in each others call logs,
this might be an interesting information in regards of rout-
ing and data storage. Our SODESSON project [3] focuses
on leveraging these kinds of information.
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Baden Württemberg gGmbH within the SpoVNet project.

7. REFERENCES
[1] D. Ashbrook and T. Starner. Using GPS to Learn

Significant Locations and Predict Movement Across
Multiple Users. Personal and Ubiquitous Computing,
7(5):275–286, Oct. 2003.

[2] X. Bao, U. Lee, I. Rimac, and R. R. Choudhury.
DataSpotting: Offloading Cellular Traffic via Managed
Device-to-device Data Transfer at Data Spots. ACM
SIGMOBILE Mobile Computing and Communications
Review, 14(3):37–39, Dec. 2010.

[3] I. Baumgart and F. Hartmann. Towards Secure
User-centric Networking: Service-oriented and
Decentralized Social Networks. In Proceedings of IEEE
Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW), pages 3–8, Ann Arbor,
MI, USA, Oct. 2011.

[4] A. Cavoukian and K. Cameron. Wi-Fi Positioning
Systems: Beware of Unintended Consequences.
Information and Privacy Commissioner Discussion
Papers, June 2011.



[5] A. Chaintreau, P. Hui, C. Diot, R. Gass, J. Scott, and
J. Crowcroft. Impact of Human Mobility on
Opportunistic Forwarding Algorithms. IEEE
Transactions on Mobile Computing, 6(6):606–620,
June 2007.

[6] M. Conti and M. Kumar. Opportunities in
Opportunistic Computing. IEEE Computer,
43(1):42–50, Jan. 2010.
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