OverDrive: An Overlay-based Geocast Service
for Smart Traffic Applications

Bernhard Heep, Martin Florian, Johann Volz, Ingmar Baumgart
Institute of Telematics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
Email: {heep,florian,baumgart} @kit.edu, johann.volz@ gmail.com

Abstract—For smart traffic scenarios, communication between
traffic participants is of high importance. Classical approaches
(e.g. for information about congestions) employ a server-based
architecture, which raises scalability and privacy concerns. In
this paper, we propose OverDrive, a decentralized overlay-based
geocast service that is applicable in smart traffic scenarios and
not prone to the shortcomings of centralized designs. Information
requests for points in geographic space are routed directly via
traffic participants until they reach a node in the proximity of that
point. In contrast to other approaches, our overlay is specifically
tailored towards supporting mobile nodes—vehicles connected via
cellular networks—and leverages their speed and direction for op-
timizing peering decisions and minimizing maintenance overhead.
Exhaustive simulations in complex smart traffic scenarios show
that OverDrive achieves high delivery ratios even in high mobility
environments. At the same time, communication overhead is kept
low, making OverDrive suitable for the use with cellular networks.

I. INTRODUCTION

The assistance of people by computer systems in areas
of their everyday lives is a topic of increasing significance.
One such area is traffic, where the concept of smart traffic
is becoming more prevalent. In smart traffic, an integrated
computer system assists the driver with various tasks. A
single car’s computer system by itself can make only choices
based on locally limited knowledge. Thus, communication
with other traffic participants, e.g. other cars or stationary
infrastructure, is crucial. Examples of smart traffic applications
are dynamic route planning, the localization and reservation of
charging stations for electric cars and the management of car-
sharing fleets. For each of these examples, communication that
involves the participants of the network at specific locations
is a necessity. For dynamic route planning, one might need to
query the congestion status along suggested routes. Charging
stations might advertise their status to only these cars that are
close-by. Queries for available shared cars may be flooded into
an acceptable region around the requester.

All of these use cases depend on a common geocast
communication service: a system which allows each traffic
participant in the system to send messages to other participants
based on their location data. This includes both forwarding a
message to a single participant and flooding a message to all
participants in a given area, for requesting and distributing
information.

In this paper we propose the distributed geocast service
OverDrive, which does not depend on a server-based in-
frastructure. Instead, the participants communicate directly
over cellular networks. By establishing overlay connections
between the participants, a logical peer-to-peer overlay is
created that is used for routing messages. For our scenario,
such an architecture has the following advantages: First, the

overlay network has no single point of failure and does
not require permanent availability of a well-known trusted
service. Second, since the capacities of a peer-to-peer system
grow with the amount of users, the approach has an inherent
scalability. Finally, it avoids the aggregation of location data
in a centralized database. Any scalable peer-to-peer design
requires that each participant stores information about only a
bounded number of its peers, thus relaxing privacy concerns.
Even though several overlay protocols for geocast have been
proposed recently (see section II), neither of these approaches
fulfills all requirements of the smart traffic scenario: Mobility
is only rarely considered, and even then, no special care is
taken to reduce the required maintenance traffic.

For the evaluation of OverDrive we augmented the overlay
framework OverSim with a new underlay model that mimics
the properties of cellular networks and considers mobility of
nodes. In order to keep this mobility model close to reality,
we use real-world road data and speed limit information from
OpenStreetMap. A large number of simulation runs was carried
out to identify suitable overlay parameters. Simulation results
show, that OverDrive is very scalable while maintaining a low
communication overhead suitable for cellular networks. Ad-
ditionally, it provides efficient flooding to geographic regions
and is very robust in regards to churn and node mobility.

The remainder of this paper is structured as follows: In
section II we provide an overview on related work. This is
followed by the description of our OverDrive protocol in
section III. In sections IV and V we provide details on our
simulation setup and our evaluation results followed by our
conclusion in section VL.

II. RELATED WORK

Overlay-based geographic information services can be real-
ized using structured overlay approaches. Geographic positions
can be hashed and used as keys for a DHT, yielding a locality-
extended DHT. Another approach is to use geographic posi-
tions for the generation of node identifiers, yielding location-
based nodelds [1], [2]. Here, nodelds are divided into a
location-dependent prefix and a random suffix. When using
a DHT with this approach, it enables the storage and retrieval
of location-specific content.

Additionally, several proposals for unstructured location-
aware overlays exist. GeoPeer [3] realizes geographic routing
based on a Delaunay triangulation. A mapping of each point in
space to exactly one node is derived. Globase [4] implements
a hierarchical partitioning of the geographic space into layers
of non-overlapping rectangular zones managed by dedicated
superpeers. As in other superpeer-based systems, the relocation
or failure of a superpeer triggers complex operations that lead

TABLE I: Properties of related locality-aware overlays

3 =
;) 2 g — »

B T <IN 22 2., £ S 5

S = o Z IR IS &= 3 > o ©

2SS TBTE TgE S5 25 2 a8

7 iR=1 Iz 20 Q cﬁ-g 2= o5

R ERS =82 19 S 3 a

S o s} C A .= s3] = Q o5

OZ O2 Owh OEm £E3 Zo
Locality-extended DHT - - - - - +
Location-Based Nodelds + - - + +
GeoPeer + - T + T
Globase + - + + _
GeoKad + + - + +
Geodemlia + = + T i

to a high maintenance overhead. In GeoKad [5], each node
partitions the geographic space in logical concentric rings
around its own position. A constant number of nodes from
each ring are stored as neighbors. Ring radii increase linearly
with the circle index. GeoKad is explicitly designed towards
supporting moving nodes: Each node sends location updates
to its neighbors whenever its position becomes significantly
different than the one advertised last. Geodemlia [6] also uses
rings to divide up the geographic space. However, the radii
of its rings increase exponentially. Furthermore, each ring is
divided into subdivisions to create a more geographically bal-
anced neighborhood structure. Both Geodemlia and GeoKad
use an iterative routing approach inspired by the key-based
routing overlay Kademlia [7] even though iterative routing is
evidentially slower than recursive methods [8].

The properties of the presented approaches are summarized
in Table I. None of the presented approaches fulfills the
requirements of a smart traffic scenario completely. Most
notably, and with the exception of GeoKad, all presented
approaches lack consideration for nodes that change their
geographic positions. Node movement was considered neither
in the design, nor in the evaluation of either GeoPeer, Globase
and Geodemlia. Applying these protocols to moving nodes
would thus result in drastic increases in maintenance overhead
and a heavy performance decline. This is also true for the
presented structured overlay approaches, that are additionally
unable to realize region-based flooding due to the impossibility
of realizing efficient range queries in DHTs.

GeoKad is the only existing approach that considers node
movement and is able to handle it. However, it does not lever-
age speed and direction information for optimizing neighbor
selection and minimizing update traffic. Additionally, GeoKad
is based on a suboptimal iterative routing scheme, does not
support flooding operations, and relies on the existence of a
central node that holds global information. To our knowledge,
there are also no conclusive evaluations of the communication
latencies and bandwidth requirements of the GeoKad overlay.
For that manner, no complete evaluation of any overlay-based
geocast system in a smart traffic scenario is known to us.

III. THE OverDrive APPROACH

In the following we present the OverDrive approach in
detail, i.e. its fully decentralized overlay structure, maintenance
procedures, and message routing.

A. Neighborhood Table: Structure and Maintenance

This section first describes the structure OverDrive’s over-
lay topology followed by a description of maintenance opera-
tions.

Local Node
Neighbor

Fig. 1: A node’s neighborhood table: Neighbors farther away
may have higher deviations in speed and bearing.

1) Neighborhood Structure: The neighborhood structure is
based on mapping neighbors to a set of & concentric rings
around the position of the current node. Similar to [6], the
radii of these rings start with r, and grow exponentially with
the distance from the common center. Based on the distance
from the current node, neighbors fall into one of the different
rings. This concept is illustrated in Fig. 1.

Each ring has an index, starting with 0, and the index ¢ for
a neighbor with distance d can be determined as follows:

0 ifd<rmy
i=<j ifr -2 <d<r -2 for0<j<k
k oifr -2 <d

We chose exponentially growing radii in order to allow
efficient long-distance routing while also maintaining exten-
sive knowledge of nearby nodes. When routing a message,
the initial hops can cover large distances via the sparsely
distributed far-away neighbors. As more distance is covered,
more neighbors are known in the proximity of the target, thus
eventually enabling the exact geographic delivery. Extensive
local knowledge is also necessary in order to ensure that
flooding operations will reach a significant portion of the nodes
within a desired area.

The amount of neighbors present in each ring is deter-
mined by the parameters ng4es and n,,4,. The parameter nges
indicates the desired number of neighbors a node wishes to
keep in each ring. As long as it has not reached this number,
it will actively search for more nodes, a process described
in III-A3. The parameter n,,,, indicates how many neighbors
each ring should have at most. A ring that has a neighbor count
between these two parameters will potentially accept neighbor
connections, but will not actively search for new ones.

Nodes store node handles for each of their neighbors,
together with a corresponding geographic descriptor including
the coordinates (latitude and longitude) of the neighbor and its
movement direction and speed.

2) Scoring of Neighbors: The decision whether to accept
or search for new neighbors is based on a scoring function.
A score is assigned to each potential neighbor based on the
deviation of its predicted future position from that of an ideal
neighbor. The predicted future position after a timespan ¢ .,
is determined by the current position, the movement direction
and the speed of the potential neighbor. For this prediction we

e
05O .

e\.\at\‘,’“beme‘\ Ideal candidate

Yi\o‘Ne(s future position

‘: \ T ‘A' Own future
Candidate future e iy position
position

Candidate current X

position
? Own current
position

Fig. 2: The scoring function based on the deviation of the
candidate and a hypothetical ideal neighbor.

assume that the potential neighbor does not change its speed
or direction. The conceptual ideal neighbor is one that has
exactly the same speed and bearing as the node itself. Ideal
neighbors lead to a very stable neighborhood structure: the
relative position of the neighbor to the node does not change,
and therefore the neighbor always maps to the same ring. This
concept is illustrated in Fig. 2.

The scoring function score() for a node X can be formal-
ized as follows (with pos,, ., and pos,,.,, denoting the pre-
dicted future position and the predicted ideal future position,
respectively):

score(X) = d(pOS;m’ed (X7 tht)v posideal(X’ tfut))

Note that a lower score is a better one. When scoring
candidates for themselves, nodes additionally consider the
positions of their current neighbors. This is done to prefer
the inclusion of nodes that cover sparse regions within a
ring. Specifically, nodes calculate the average angular distance
between the potential neighbor and all existing neighbors in
the same ring. The average distance is normalized first to a
[0,1] interval and then over the number of existing nodes in
the ring. For an average angle distance of a (in radians) and
n > 1 other neighbors in the ring, the total factor that would
be applied to the score is:

a

fangle =1+ (1 - %)

Using this scoring function as it is, stationary nodes such
as charging stations will likely receive low scores. We mitigate
this by applying a diminishing factor to the score of stationary
nodes. Since the overlay itself is agnostic of any special-
purpose nodes, it asks the application whether a diminishing
factor fponus should be applied.

3) Looking for New Neighbors: Each node periodically
calculates its satisfaction with each of its rings. If there
are less than nges; neighbors in a ring, or if the scores of
the neighbors in the ring are below a given threshold, the
respective nodes starts a search for new neighbors for this
ring. There are different threshold scores depending on the ring
index. This allows the toleration of higher deviations from the
ideal neighbor positions in far away rings. Higher index rings
are larger and it is thus less likely that a neighbor will quickly
leave the area of the ring.

The search for new neighbors for a ring works by routing a
find neighbors request to a random point within the geographic
area covered by that ring. The request is answered by the
node that is closest to that point. The response contains the
descriptors of a subset of that node’s neighbors. The subset

is chosen by filling the response with nodes starting from
the neighbors in its innermost ring and going outward from
there. Nodes from the same ring are sorted by the score the
requester would give them. The scores are calculated based on
the requester’s geographic descriptor included in the request.

Once the response has arrived at the originator of the
request, the score for each neighbor candidate is calculated. If
the current number of neighbors n for the given ring is lower
than nges, the node tries to add nges —n new neighbors to this
ring. This is done by sending neighbor connect requests to the
nges — N best scored neighbor candidates of the find neighbors
response. In a second step the node additionally tries to replace
existing neighbors by neighbor candidates with better scores.

4) Handling of Neighbor Connect Requests: Whenever a
node X receives a neighbor connect request from another node
Y, it needs to decide whether to accept it. If there are less than
Nmag N€ighbors in the appropriate ring, Y is always accepted.
Otherwise, Y is only accepted if it has a better score than the
currently worst scored neighbor in that ring.

5) Updating Location Data: Since our overlay is specifi-
cally designed for mobile nodes, keeping the information about
neighbor locations up-to-date is a critical part of neighbor
maintenance. Instead of sending location updates at a fixed
time interval, we use a more efficient approach by taking into
account the geographic descriptors that have been exchanged.
Nodes store two pieces of information about the previous loca-
tion update: when the last update message was sent, and which
geographic descriptor was given in the message. With this
information, a node can calculate what position its neighbor
would predict. If the deviation between this prediction and the
true position exceeds a certain threshold, a location update
message with new geographic information is sent. Since the
location update messages also serve as ping messages to verify
that neighbors are still reachable, there is a maximum interval
after which an update will be sent in any case.

Neighbor connections are always bidirectional—state needs
to be maintained and maintenance traffic generated for each
neighbor that needs a node’s position data, even if that node
does not require the data of the neighbor.

B. Message Routing

OverDrive uses a recursive, greedy routing scheme for
delivering messages towards destinations in geographic space.
This means that at every hop, the message is forwarded to
the neighbor that is closest to the target point in geographic
space. If none of the current hop’s neighbors is closer to the
target than itself, it assumes the responsibility for the message
and processes it. To prevent routing loops between two moving
nodes, which might occur if both nodes have outdated location
information about the other, messages are also considered to
be at their last hop if the closest node according to local
neighbor location information is also the previous hop. This
routing mechanism is used for both geocast services provided
by OverDrive: geographic unicast and geographic flooding.

1) Unicast: Geographic unicast enables an application to
send a payload to a node in a given farget area. The overlay
encapsulates the payload in a geographic unicast message and
routes it to the center of the target region. On the destination
node the payload is passed to the application, which may send
a direct response back to the originator.

2) Flooding: Geographic flooding allows the application to
broadcast a certain payload to all nodes within a certain area.
To reach the flooding area a geographic flooding message is
routed geographically to the center of the area. The first node
within the destination area that receives the message is called
the initial flooder. It will send a confirmation that the flooding
has started back to the sender of the flooding request and start
the actual flooding process. The initial flooder will forward the
message to all of its neighbors that are within the target area.
These will then forward the message to all of their neighbors,
and so on. In order to avoid an infinite flooding loop, each node
maintains a duplicate cache and forwards every messages once
to each neighbor.

Still, naive forwarding to all neighbors at once would incur
a large overhead: Since a node’s neighbors, especially those
in the inner rings, are very likely to be interconnected as
well, a large number of duplicate messages is sent. To reduce
the amount of duplicates the retransmission of messages is
randomly delayed at each hop (by up to fiq:t). If, during this
delay, the message is received again from other nodes, it is not
forwarded to these nodes after the delay.

C. Fault Tolerance

Especially in mobile networks, it cannot be assumed that
every packet will be delivered in time, correctly, or even at
all. To deal with these problems, OverDrive uses acknowledge-
ments and retransmits location updates if no acknowledgement
is received in time. At the moment, we additionally evaluate
the usage of hop-by-hop acknowledgements for recursively for-
warded geographic unicast ans geographic flooding messages
to increase the delivery ratio further.

IV. IMPLEMENTATION AND SIMULATION MODEL

We implemented an prototype of OverDrive for the overlay
simulation framework OverSim [9]. OverDrive was realized
as an OverArch [10] component, thus enabling the flexible
combination with other modules. For example, it enables
the use of OverDrive’s geocast service by other OverArch
components and applications.

Since OverSim is primarily designed for non-mobile nodes
using Ethernet or DSL connections, we extended OverSim’s
underlay abstraction by several new models: (1) a network
model, that reflects the characteristics of data transmissions
over cellular networks, (2) a mobility model providing geo-
graphic information (such as position, speed, and direction)
and modelling node movement and (3) a churn model, to
handle the arrival and departure of nodes at the beginning and
the end of car trips.

A. Network Model

Since our scenario involves mostly moving nodes, the
purpose of our network model is to reflect the characteris-
tics of common cellular networks: (1) network latencies are
dominated by the time to reach the internal IP network of the
provider, (2) latencies in LTE networks are vastly improved
over HSPA [11], and (3) many radio cells usually share one
IP access router [12].

Our model is as follows: we divide the simulated area into
hexagons, which represent areas that are accessed via the same
access router. If two nodes are mapped to the same hexagon,

...........

\
/ \
c%j%b Access Router / N
4
\

t| Mobile Terminal \‘\‘D

—— Routing Path S i y

\
\
‘\
\ ,’
. @ PSR
\ p
\ /
\ /
\ _ /
\ Radio Access Latency (constant)
\ Y
\ /

Fig. 3: Network Model: Mapping of terminals to hexagons and
resulting latency calculation.

they only receive their base latency, but no distance-related
component. If they map to different hexagons, the distance
between the access routers is calculated as well and contributes
linearly to the bandwidth. Therefore, the total delay from the
sending of data on terminal A until it reaches terminal B
is the sum of three components: The radio access delay for
terminal A, a distance-based backbone latency between the
access routers (if applicable), and the radio access delay for
terminal B. When two terminals are served by a different
provider, we also add a constant latency on top of the result to
simulate having to route into another backbone network. The
radio access delays for the individual components are treated
separately e.g. allowing only a part of the node population to
work with LTE. Our network model is illustrated in Fig. 3.

B. Mobility Model

For achieving a high degree of realism, we define following
desirable properties for a mobility model for smart traffic
scenarios:

1) Car movement is constrained to roads.

2) Different types of roads exist (e.g. highways vs.
residential roads).

3) Cars on the same road will drive at roughly the same
speed.

4) Cars have a general direction away from their origin.

5) Faster roads are generally preferred to slower ones.

Since the well-known random waypoint model fulfills none
of our desired characteristics, we consider mobility models
used for simulations in the context of vehicular ad hoc
networking [13], [14]. Both works suggest using either an
approach based on making a random turn at each junction
or following a fastest path to a randomly selected destination.
Our underlay model supports both approaches. Both require
obtaining a road graph structure. For this, we extracted data
from OpenStreetMap [15].

1) Random Turn Model: In this model, each node is placed
randomly into the road network graph and is initially driving
towards one of its neighbors. Whenever the node reaches a
junction, a decision on where to head next is made. The
probabilities for turning into a different street are assigned
proportional to the speed limit of the road.

2) Pathfinding Model: Using this model, each node ran-
domly chooses a source and destination location. Then, the
fastest path is calculated between these two nodes, taking into
account the different driving speeds on the individual roads.

The car then moves along this path until it has reached its
destination. Contrary to the random turn model, this model
exhibits all the characteristics we deemed necessary for our
mobility model but comes with higher computational costs.
To ensure high performance during simulations, nodes select
their paths randomly from a pool of pregenerated paths.

C. Churn Model

The node churn produced by our churn model depends on
the number of nodes as well as the average path length. When
the pathfinding mobility model is used, the end of a path also
signals that the node should be deleted. If a node has reached
a one-way dead-end when using the random turn model, the
trip is over. In both cases this means that the node will leave
the overlay immediately and a new one will join from another
position.

V. EVALUATION

In this chapter, we present our evaluation methodology
and results. Our evaluation serves two purposes: we identify
optimal overlay parameters and prove that they fulfill our
requirements in realistic scenarios.

A. General Experiment Setup

In this Section, parameter values are stated that are valid
for all runs, except where explicitly noted otherwise. The
parameters for the neighborhood structure—the base ring
radius 7, the number of desired neighbors mg4.s and the
maximum number of neighbors n,,.,—are not set here, as
finding optimal values for them is part of the evaluation itself.

Performing runs with nodes that run only the OverDrive
overlay component allows only observations about neighbor-
hood structure and maintenance traffic. In order to evaluate the
quality of the geocast service provided by OverDrive, we thus
developed an additional test application. Our test application
sends geographic unicast messages (GUMs) to random points
within the bounds of the simulated road network. Messages
are sent at random intervals, which are normally distributed
(with truncation) around t,,, = 60s. There is a certain
chance priooq = 1% that the flooding of area is requested
instead of sending a GUM. The radii for flooding requests
and GUMs are determined by the parameters dfjooq = 5km
and appgumpred = 2km, respectively. The test applications
responds to received GUMs, communicating that the routing
of the message has been successful. Whenever a GUM fails,
the test application verifies (using global knowledge) whether
there is any node inside the target region at all.

In each simulation, we use node populations consisting
of 99 % mobile and 1% stationary nodes. Stationary nodes
model stationary smart traffic entities like charging stations and
do not exhibit churn behavior. For mobile nodes, we use the
pathfinding mobility model with 100,000 precomputed paths.
For building up the overlay, we initially insert nodes at a low
rate until 200 nodes have been added. After that, nodes are
inserted more quickly. We did this to be able to fill our network
without requiring an excessively long warm-up time, while
avoiding an overload of the few bootstrap nodes available
in the early phases. The lifetime distributions of nodes are
equivalent to the path driving time distribution. As we want
to focus on scenarios that have a higher percentage of longer

(a) Germany (c) Karlsruhe

(b) Baden-Wiirttemberg

Fig. 4: Different road networks used for the evaluation.

drives, we filtered out half the paths that had a shorter driving
time than the total simulation time. This results in about 30 %
of paths taking a shorter time to drive than all of the 4200s
of simulation time. As a default road network, we use Baden-
Wiirttemberg’s major roads (Fig. 4b). Unless stated otherwise,
node populations of N = 10,000 were used.

B. Evaluation Metrics

We define a set of metrics for evaluating the performance
and costs of our geocast overlay. The GUM success rate
(SRquum) represents the percentage of GUMs which were
successful out of those that could have been successful. If no
node was present in the target area at the time the GUM was
sent, the GUM is not counted towards the SR aynr. Let mgyce
be the number of successful responses, Mg, be the number of
requests sent, and Mynqv0id the number of unavoidable errors.
The GUM success rate is then formally defined as:

SRaum =

mS’U.CC

req — Munavoid

There are two possibilities for a GUM to be unsuccessful
if a node is presented in the target area: it may get dropped
(in case of packet loss) or the greedy routing may not reach
the target area. To avoid the first, we use end-to-end timeouts
and retries. The second case is not prevented in our current
design. One possible approach for future work on this aspect
is to send a message across multiple paths, or the usage of
hop-by-hop acknowledgement.

The key cost metric we use for the evaluation of OverDrive
is bandwidth consumption, as communication in our scenario
is via mobile cellular technologies like UMTS. We use two dif-
ferent statistical values for measuring bandwidth consumption.
The first value is the average bandwidth per node. To prevent
that certain nodes effectively become “super nodes” which
carry a much larger bandwidth burden than normal nodes,
we additionally look at the 99th percentile of the required
bandwidth, that is, the bandwidth that is higher or equal to
that of 99 % of all nodes.

For choosing suitable parametrizations for our overlay
based on these metrics, we use the performance vs. cost
Jframework proposed in [16]. The set of candidates found using
this approach are called the hull of the result set. The hull
includes exactly these results for which no other result offers
the same or better performance at a lower cost. More formally,
if a candidate c is in the hull H of a result set R with respect
to the cost metric C' and the performance metric P, it holds
that:

ce H&eVeeR: C(x) > C(c) or P(x) < P(e)

ResultData @
Hull -—

. __o-8-o-0--0
vy

]
g s &
2 o oo
H P
3 o7)
2)
3 o6 P
06 14
055 :

400 500 600 700 800 90 1000 1100 1200 1300 1400
Average Bandwidth [B/s]

Fig. 5: The average bandwidth vs. the GUM success rate.

C. Ring Parametrization

The most important parameters to set when configuring
the overlay are the ring parametrizations—how large the rings
are (rp), how many neighbors we actively try to find for each
ring (nges), how many we store at most (7n,,4,), as well as
the number of rings (k). Through simulation, we have found
suitable values for these parameters which then were used in
subsequent studies.

We set the number of rings to a fixed value of k = 8 since
even at the smallest evaluated r, value of 1km, each node
can reach at least half of our main evaluation area (Baden-
Wiirttemberg) with its outermost ring. For all other evaluated
rp, values, the entire area is virtually completely covered by
the rings regardless of node position.

For all other ring parameters, we tested every combination
within certain ranges, averaging over several simulation runs
each. We varied the desired number of neighbors ng.s €
{3,4,5,6,7}, the factor ¢ used for calculating the maximum
number of neighbors (Nmaz = ¢ - Nges, ¢ € {2,3,4,5}), and
the base radius 7, € {2km,3km,4km}.

First, we examined how different parameters affect the
SRGuy when other parameters are fixed!: (1) An increas-
ing number of desired neighbors ng.s positively affects the
SRGun, but with diminishing returns. (2) It can be very
beneficial to allow for far more neighbors (7,,,,) than we
actively look for. This indicates that despite the symmetrical
scoring for neighbors, the situation still arises that some nodes
are in need of more neighbors while their potential neighbors
are already satisfied with their own number. (3) A higher 7,
consistently leads to a worse SRayas, but the results vary
significantly only when fixing the neighbor count parameters at
very low values. This correlation is expected, as a higher base
radius leads to a lower neighbor density when other parameters
are fixed.

Now that we know the influence of the different parameters
on the SRayy, we need to determine which combination of
the tested parameters to choose. As a cost metric, we first
use the average upstream bandwidth. The data points over all
different parameter values, along with the hull, are depicted in
Fig. 5: Most points are on or very near the hull. This indicates
that none of the combinations tested are outstandingly negative,
but rather that each GUM success rate value inherently comes
with a given bandwidth cost that is more or less the same
regardless of the parametrization through which the GUM
success rate was achieved. GUM success rates initially increase

IThese results are not shown here due to a lack of space.

ResultData @ Py
P o .
09 Hull -——- P o t LIPS o o %
¥ o e)
0.85 [X J o® . . L4
® o4 . ®e o
g o8 ‘y . e ., ¢
2 o7 i . °
8 I L]
H . ° .
@
=
H
o

|
i
|
i °
06 o

0.55 °

0.5
3000 4000 5000 6000 7000 8000 9000 10000 11000
99-Percentile Bandwidth [B/s]

Fig. 6: The peak bandwidth vs. the GUM success rate.

TABLE II: The intersection of both hulls.

Ndes Numaz T SRaum Average Bandwidth Peak Bandwidth
3 6 2km 60.8 % 460 B/s 3573 Bls
4 12 2km 82.6 % 681 B/s 4209 B/s
4 20 2km 88.6 % 919 B/s 5208 B/s
7 35 2km 92.8 % 1357 B/s 5890 B/s

rapidly when more bandwidth is expended, but there are
strongly diminishing returns after roughly the 85 % mark.

In Fig. 6, we use the 99 % percentile of bandwidth usage
to represent the peak bandwidth. Here, the situation is very
different from that of the average bandwidth. Only very few
points present a reasonable trade-off between bandwidth and
GUM success rate, and the highest GUM success rate is
reached before half the maximum peak bandwidth of the
results needs to be expended.

Since we want to determine a set of parameters that
provides a good trade-off with respect to both cost metrics,
we consider the intersection of both hulls. Formally, points
in this intersection have the following property: any other
point with a higher SRgyas must also have both a higher
average bandwidth cost and a higher peak bandwidth cost.
This leaves us with only four points, which are listed in Table
II. We chose the third parameter set as we prefer its higher
success rate over the second option’s slightly lower bandwidth
requirements. Therefore, our final parametrization values are:
Ndes = 4, Nmaz = 20,75 = 2 km.

D. Traffic Categorization

In this section, we analyze how different factors contribute
to the total send datarate (919B/s) of a node using our
final parametrization values. The overlay maintenance traffic
clearly dominates the total traffic (896.7 B/s). This means
that applications could be created that send out significantly
more requests than our test application (17.5B/s) without
proportionally increasing the traffic requirements. A second
observation is that the traffic required for handling other nodes’
maintenance operations, i.e. for forwarding their find neighbor
requests (782.2 B/s), is much higher than the traffic required for
our own maintenance (114.5B/s). Similar to the maintenance
traffic, the handling of other nodes’ requests requires more
upstream traffic (4.7 B/s) than our own requests (1.3 B/s). The
reason for both is the geographic routing: a request that needs
to be sent out once gets forwarded multiple times by different
hops. We also see that flooding produces a substantial amount
of traffic (11.5B/s) despite the flood chance being only 1 %.

Statlonary Nodes ——
All Nodes

Node Share (Normalized)

Average Number of Hops
o 4 m e &2 o a oo N @

B flin
0 20 40 60 80 100 120 140 160 0 50 100 150 200 250
Number of Neighbors Distance [km]

(a) The distribution of neighbor
counts.

(b) Hop count in relation to the
distance to the target.

Fig. 7: Neighbor and hop counts

E. Analysis of Neighborhood Structure

In Fig. 7a we illustrate the distribution of neighbor counts.
It appears that stationary nodes are roughly as well-connected
as any general node. This shows that giving a bonus score to
stationary nodes in the network works in practice. The overall
results are also satisfactory: each node seeks out to have 80
neighbors and allows up to 160, and the vast majority of nodes
fall within that range.

F. Forwarding Behavior

The purpose of OverDrive’s structure is to enable efficient
geographic routing over both short and long distances. To
analyze how it can provide this, we examine the necessary
number of hops required in relation to the distance between the
sender and the target point. We divided the occurring distances
from Okm to 250km into intervals and calculated the average
of all values in each interval. The results that are illustrated in
Fig. 7b show the average hop count in each interval, as well
as the 97.5 % and 2.5 % percentiles, i.e. the bar indicates the
range in which 95 % of all hop counts fall. The observations
are consistent with our expectations. The hop count increases
sublinearly with the distance to the target point. This proves
that maintaining connections to far-away nodes achieves the
intended result of enabling long-distance routing with a low
hop count. At the same time, target points very close-by are
easily reached in fewer hops.

G. Flooding Behavior

Our primary performance metric for flooding operations
is the flood coverage F.,,: When the application sends out a
flooding request, it first checks via global knowledge which
nodes are currently inside the area that is to be flooded. Here,
Nareq 18 the number of nodes in that area. When a flood is
received by a node, it checks whether it was determined to
be in the area at the time of the sending. If 5o, M greqrec 1S
increased. Thus, the flood coverage F,,, is defined as:

F _ n arearec
cov T
n area

Additionally, we are interested in the costs of the flooding
operation. This is mainly described by the traffic required per
successful receiving of the message (Fy.s) and the number of
duplicates per message receipt Fg,:

btraf
)
Mtotal

th,f = qup =

Mtotal

TABLE III: Flooding evaluation with redundancy reduction.

trwait Feou Firap Fiup
0 94.5 % 8.7 KB 22.8
1 95.5% 5.6 KB 14.4
10 952 % 49 KB 12.4

TABLE 1V: The results for the Karlsruhe scenario.

Mobility Model Node Count Th dgum SRaum
Pathfinding 10000 2km 2km 24.1%
Random Turn 10000 2km 2km 97.3%
Random Turn 1000 2km 500m 82 %
Random Turn 1000 1km 500m 94.3 %

The cost metric Fl.,f is calculated from the total number of
floods received in the network my,.,; and the total flooding
traffic caused by the network birqf. Fgyp is defined analo-
gously. Note that my,t, only counts each receipt once per
message and node—duplicates do not increase this value.
Instead, they are counted in 1 gyyps.

To determine the effects of delayed forwarding on flooding
redundancy we tested varying values for the .4 parameter,
that indicates the time range for the forwarding delays. We
tested ? 44 values of 0, 1 and 10 seconds. The results are
listed in Table III. The flood coverage metric barely varies
between the different parametrizations. This is to be expected,
as the technique do not exclude nodes from getting a forwarded
message. The value for the coverage—always around 95 %—
shows that flooding operations are very reliable in practice.
Delayed forwarding leads to a significant decrease in flooding
duplicates and in the amount of generated traffic.

Overall, the flooding operation is feasible to use in practice
due to the high flood coverage. Due to the large bandwidth
cost, regulations for the use of the flooding mechanism might
be required. Possible approaches here are to restrict the number
of flooding operations per neighbor or to limit the allowed
flooding radius.

H. Alternative Road Networks

Next, we evaluated OverDrive on Germany’s Autobahn
network (s. Fig. 4a). Here, the area is much larger, allowing
for longer paths, and nodes move faster due to the higher
speeds possible on highways. To properly compensate for
the larger area, we set N = 20,000 and adjusted the GUM
radius to 10 km for these runs. The measured SR gy of 92 %
proves that the overlay works correctly in this scenario as well.
However, the average traffic is much higher (1884 B/s), though
the peak traffic is lower (3040B/s) due to higher neighbor
counts. The lower peak bandwidth is likely to be caused by
the larger network being able to spread the maintenance load
more evenly.

To experiment how OverDrive works in a much smaller
region, we finally utilized the road network of Karlsruhe
(s. Fig. 4c). As a starting point, we used the same parameters
as our initial runs: N = 10000 with mobile nodes (99 % of
the node population) following precomputed paths, sending out
GUMs with a radius of 2km. For the ring parametrization, we
also used the configuration we arrived at as our optimum: an
rp of 4km, nges of 4, ny,q, of 20. Due to the paths generated
in Karlsruhe being very short this leads to extreme churn
conditions where the GUM rate is 24.1 %. In order to see

the operation of the overlay in Karlsruhe without the effects
of churn, we additionally performed runs using the random
turning mobility model. In order to prevent all cars from
reaching a dead end, we excluded dead ends from the network.
With this churn-free network, we can reach an SRgyy of
97.3 % even without choosing suitable parameters for this
scenario.

In addition to these runs where we mostly transferred
the existing parametrizations into another road network, we
used some parametrizations specific to the small network.
We reduced the node count to 1000, and the GUM radius
to 500m. With this, we tested OverDrive with base radii of
Ty € {1 km,ka}. With r, = 2km, the SRgyay is about
82 %. However, it can benefit from a smaller r, = 1km
that was adapted to this scenario, allowing it to find more
close-by neighbors. This leads to a SRgyn of 94.3 %. We
conclude from these results that extreme churn causes low
performance of OverDrive in scenarios like the Karlsruhe
network. However, slightly adapted ring parameters to the new
network—which is smaller and more densely populated with
nodes—yielded a significant increase in success. The results
for all parametrizations are summarized in Table IV.

VI. CONCLUSION AND FUTURE WORK

Efficient communication is a central element to realizing
smart traffic applications on a large scale. In this paper, we
thus propose OverDrive, an overlay-based geocast service for
smart traffic applications. Our approach enables the routing of
messages (e.g. traffic information requests) towards points in
geographic space and the flooding of messages within geo-
graphic areas. We use an unstructured overlay approach, with
routing tables based on the partitioning of geographic space
into concentric rings. In contrast to related systems, OverDrive
leverages the speed and movement direction of nodes, which
allows for overlay operation with low maintenance traffic.
Additionally, OverDrive realizes all requirements to a geocast
service for smart traffic scenarios while each existing proposal
fails at one or more aspects.

We evaluated OverDrive using a realistic underlay abstrac-
tion providing a mobility model for smart traffic scenarios
based on actual road data from the OpenStreetMap project,
which leads to realistic movement and churn patterns. Based
on extensive simulations, we found that geographic unicast
messages in OverDrive succeed in over 90 % of the cases and
flooding operations achieve an average node coverage of 95 %
in the selected area.

In future works, we plan to asses and improve the privacy-
aspects of our design, minimizing the amount of private data
being shared by individual nodes [17]. Additionally, we will
explore the possibilities for leveraging spontaneous ad-hoc
communication links for lowering the consumption of mobile
data traffic.

ACKNOWLEDGMENT

This research was supported by the German Federal Min-
istry of Economics and Technology as part of the iZEUS
project 01ME12013. The authors are responsible for the con-
tent.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

F. Hartmann and B. Heep, “Coordinate-based Routing: Refining
Nodelds in Structured Peer-to-Peer Systems,” in Proceedings of the
International Conference on Ultra Modern Telecommunications &
Workshops (ICUMT’09), St. Petersburg, Russia, Oct. 2009.

S. Zhou, G. R. Ganger, and P. Steenkiste, “Location-based Node IDs:
Enabling Explicit Locality in DHTSs,” School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep. CMU-
CS-03-171, Sep. 2003.

F. Aradjo and L. Rodrigues, “GeoPeer: A Location-aware Peer-to-Peer
System,” in Proceedings of the Third IEEE International Symposium
on Network Computing and Applications (IEEE NCA’04), Cambridge,
MA, USA, Aug. 2004, pp. 39-46.

A. Kovacevié¢, N. Liebau, and R. Steinmetz, “Globase. KOM - A P2P
Overlay for Fully Retrievable Location-based Search,” in Proceedings of
7th JEEE International Conference on Peer-to-Peer Computing (IEEE
P2P’07), Galway, Ireland, Sep. 2007, pp. 87-96.

M. Picone, M. Amoretti, and F. Zanichelli, “GeoKad: A P2P Distributed
Localization Protocol.” in Proceedings of the 8" IEEE International
Pervasive Computing and Communications Conference (PERCOM
2010) Workshops, Mannheim, Germany, Mar. 2010, pp. 800-803.

C. Gross, D. Stingl, B. Richerzhagen, A. Hemel, R. Steinmetz, and
D. Hausheer, “Geodemlia: A Robust Peer-to-Peer Overlay Supporting
Location-Based Search,” in Proceedings of the 12" IEEE International
Conference on Peer-to-Peer Computing (IEEE P2P’12), Tarragona,
Spain, Sep. 2012, pp. 25-36.

P. Maymounkov and D. Maziéres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in 15t International Workshop
on Peer-to-Peer Systems (IPTPS 2002). Revised Papers, vol. 2429/2002,
Cambridge, MA, USA, Mar. 2002, pp. 53-65.

B. Heep, “R/Kademlia: Recursive and Topology-aware Overlay Rout-
ing,” in Proceedings of 2010 Australasian Telecommunication Networks
and Applications Conference (ATNAC 2010), Auckland, New Zealand,
Nov. 2010, pp. 102-107.

I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proceedings of the 10*" IEEE
Global Internet Symposium (GI °07) in conjunction with IEEE INFO-
COM 2007, Anchorage, AK, USA, May 2007, pp. 79-84.

I. Baumgart, B. Heep, C. Hiibsch, and A. Brocco, “OverArch: A
common architecture for structured and unstructured overlay networks,”
in Proceedings of the 15" IEEE Global Internet Symposium in con-
Jjunction with IEEE INFOCOM 2012, Orlando, FL, USA, Mar. 2012,
pp. 19-24.

C. Serrano, B. Garriga, J. Velasco, J. Urbano, S. Tenorio, and M. Sierra,
“Latency in Broad-band Mobile Networks,” in Proceedings of the 69t
IEEE Vehicular Technology Conference (VIC-Spring 2009), Barcelona,
Spain, Apr. 2009, pp. 1-7.

D. Kumar, A. Miyabayashi, and O. Kari, “Availability Modelling of the
3GPP R99 Telecommunication Networks,” in Proceedings of European
Safety and Reliability Conference, Masstricht, The Netherlands, Jun.
2003, pp. 977-984.

P. Mogre, M. Hollick, N. d’Heureuse, H. Heckel, T. Krop, and R. Stein-
metz, “A Graph-based Simple Mobility Model,” in Proceedings of the
ITG-GI Conference on Communication in Distributed Systems (KiVS
2007), Bern, Switzerland, Feb. 2007.

D. R. Choffnes and F. E. Bustamante, “An Integrated Mobility and
Traffic Model for Vehicular Wireless Networks,” in Proceedings of
the 2% ACM International Workshop on Vehicular Ad Hoc Networks
(VANET 2005), Cologne, Germany, Sep. 2005, pp. 69-78.

M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” Pervasive Computing, vol. 7, no. 4, pp. 12—18, Oct. 2008.

J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil, “A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn,” in Proceedings of the 24" Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2005),
Miami, FL, USA, Mar. 2005, pp. 225-236.

B. Heep and 1. Baumgart, “Maintenance and Privacy in Unstructured
GeoCast Overlays for Smart Traffic Applications,” in Proceedings of
the 4" International Conference on Ubiquitous and Future Networks
(ICUFN 2012), Phuket, Thailand, Jul. 2012, pp. 286-287.

