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Abstract—Security in Wireless Sensor Networks (WSNs) is
an omnipresent topic. In many application scenarios, like the
surveillance of critical areas or infrastructures, security mecha-
nisms have to be used to build reliable and secure applications.
Up to now, most of the used cryptographic algorithms have
been implemented in software despite the resource constraints
in terms of processing power, memory and energy. In the
past few years, the usage of special hardware accelerated
security modules has been proposed as a viable alternative to
software implementations. However, the energy-efficiency has
not yet been evaluated in-depth. In this paper, we analyze
the VaultIC420 security module and present an evaluation
of its energy-efficiency. We compare the performance and
energy-efficiency of the hardware module to common software
implementations like TinyECC. For the energy measurements,
we use IRIS sensor nodes in the SANDbed testbed at the
Karlsruhe Institute of Technology. Our evaluation shows, that
the VaultIC420 can save up to 76% of energy using different
MAC layer protocols. It also shows, that the current draw of
the VaultIC420 requires a duty-cycling mechanisms to achieve
any savings compared to the software implementation.
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I. INTRODUCTION

Over the last several years, Wireless Sensor Networks
(WSNs) have been proposed for a vast number of ap-
plications. In most scenarios, secure communication and
robust operation are among the most important application
requirements. The surveillance of critical infrastructures or
critical areas like borders or industrial complexes is one
of the most named and analyzed scenarios. Here, the need
for secure communication and robust operation is widely
accepted. Many security protocols and cryptographic mech-
anisms to that end have been proposed, but they have rarely
been implemented or evaluated in realistic applications or
environments.

A typical wireless sensor node is a very resource con-
straint system, e.g. the sensor nodes’ energy budget and
processing power is very limited. Thus the computational
expensive cryptographic mechanisms have to be used with
care. This is especially true for the more costly asymmetric
cryptographic algorithms. Up to now, most research has been
done on efficiently implementing security protocols or mech-
anisms in software. Recently, some researchers proposed the
usage of hardware security modules like a Trusted Platform
Modules (TPMs) or similar hardware [1], [6]. One key
motivation for using hardware security modules is reducing
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Figure 1. Monitoring scenario

the energy consumption for the cryptographic operations
and therefore improving the energy-efficiency of the overall
application. Also, the usage of asymmetric cryptographic
algorithms with larger exponents (e.g. RSA) now seems to
be feasible when using hardware modules. Unfortunately,
the question whether these modules can actually improve the
energy-efficiency hasn’t been analyzed in-depth. One reason
is that the measurement of energy consumption in a sensor
network is very challenging. To gain reliable measurements,
special purpose measurement hardware has to be used. With
such devices, one is capable of performing high resolutive
measurements of the energy consumption on real nodes
running a real sensor network application.

In this work, we will evaluate the energy-efficiency of
hardware-based security mechanisms within a monitoring
scenario. For our experiments, we use a monitoring appli-
cation already shown as a demo in [6]. It is capable of
using cryptographic mechanisms implemented in software
and in hardware. In the demonstrator, we presented the
general approach for measuring and comparing the energy
consumption of ECDSA within a monitoring scenario. In
our demo, we used the SANDbed testbed to gain reliable
and accurate measurements of the energy consumption. In
SANDbed, each sensor node is equipped with a Sensor Node
Management Device (SNMDs) [3].

The basic monitoring scenario is shown in Figure 1: Two
IRIS sensor nodes are equipped with a passive infrared sen-
sor (PIR) to detect motion. Both nodes are each connected
to a SNMD. If motion is detected, a PIR-event message is
cryptographically secured and sent to the base station (node
C).

We will show, that hardware-based mechanisms can in-
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Figure 2. New sensor board with VaultIC420 and PIR sensor

deed improve the energy-efficiency of the overall application
but only for certain algorithms and if the hardware modules
are duty-cycled.

II. RELATED WORK

Up to now, most research has been done on efficiently
implementing well known security protocols or mechanisms
in software. Yet, there are very few publicly available
implementation that have been evaluated with regard to
energy-efficiency. Examples are the TinyECC library for
elliptic curve cryptography [2] or the RELIC library [13].
Nevertheless it is widely accepted, that improving the
energy-efficiency of cryptographic algorithms will make
the implementation of secure applications, like monitoring
applications for critical infrastructures, more feasible [5].

Some security protocols like the Rich Uncle proto-
col [12] are built upon the requirement for nodes with
higher processing power or unlimited energy resources.
More recent work has proposed the usage of hardware-
based security mechanisms like a trusted platform module
(TPM) or similar hardware [1] for that purpose. With these
hardware modules, commonly known and used algorithms
like RSA can now be used more efficiently on typical
sensor nodes. One further motivation for using hardware-
based security modules is limiting the energy consumption
for the cryptographic operations. The authors implemented
a TPM hardware module within their sensor node platform.
They argue, that the hardware-based security module makes
public key cryptography with RSA feasible compared to a
software only implementation. However, within their work
they only computed the overall energy consumption of the
hardware module based upon previous measurements with
an oscilloscope. While this approach can be used to quickly
get some energy usage data the approach is also error
prone and not very accurate. This is especially true when
more complex applications have to be compared. While the
authors claim that the costs for using the TPM module are
quite high, they don’t present a duty-cycling of the TPM

Figure 3. SANDbed Hardware used in the demonstrator and in our
evaluation

module. The overhead for powering the TPM up or down
while preserving the TPM’s state and key material is not
presented.

Based upon this approach with TPM modules, there
are several implementations of different security protocols.
Krauß et al. implemented a secure code update protocol with
attestation, T-CUP [11]. Yet, they didn’t perform an evalu-
ation of the actual energy consumption. Another approach
for attestation with a TPM module was published in [10].
Here, the authors evaluate the overall energy consumption of
the protocol by using the execution and the current draw of
different operation states of the TPM. Again it is not stated
how the measurement of the current draw was performed,
duty-cycling of the TPM is not considered. Kothmayr et
al. presented a study on the usage of a TPM module for
implementing DTLS over 6LoWPAN [9]. They showed,
that they could successfully implement a standard conform
DTLS handshake. There is no comparison of the energy-
efficiency with a software implementation.

III. EVALUATION TOOLS AND SCENARIO

Our evaluation scenario can be seen in Figure 1. For our
evaluation, we use the implementation of a small monitoring
system for critical areas that is able to detect any movement
in the critical area as described in [6]. We use two IRIS
sensor nodes (nodes A and B) with passive infrared sen-
sors (PIR). Whenever one of the PIR sensor detects some
motion, a so called PIR-event is triggered which is then
transmitted to a basestation (node C). All of the nodes have
an attached hardware security module which can be activated
and deactivated depending on the evaluation scenario. As
a hardware security module, we use the VaultIC420 from
INSIDE Secure which is also attached to the extension
board that can be seen in Figure 2. To perform energy
measurements, we employ two Sensor Node Management
Devices (SNMDs), see Figure 3. Our application is written
in TinyOS, a special operating system for WSNs. During
our evaluation we use different MAC-layer protocols, IEEE
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802.15.4 as implemented in TinyOS and TinyOS Low Power
Listening [8] as the de facto standard duty-cycling MAC-
layer protocol. In the demonstrator, we presented the general
evaluation scenario for comparing the energy consumption
of different protocols. As an example, we compared the
energy consumption of ECDSA signature generation and
verification in a monitoring scenario. In this work, we are
analyzing the energy consumption of different cryptographic
algorithms and services like encryption, message digests
and digital signatures. Moreover, we are also analyzing the
additional overhead for duty-cycling the hardware module
as well as a more detailed comparison to software based
implementations.

A. Energy Measurement

For a distributed measurement of energy we use Sensor
Node Management Devices (SNMD) [3] which are deployed
at the SANDbed testbed at the Karlsruhe Institute of Tech-
nology. Attached to each SNMD is a standard IRIS sensor
node and a sensor board with the VaultIC420 3. SNMDs
are capable of high resolutive voltage and current measure-
ments. The SNMD provides sampling frequencies of up to
500kHz with an average measurement error below 1% [7].
Measurements are sent to Management Nodes over USB to
store the data for a later evaluation. No instrumentation of
the application code is necessary and measurements do not
interfere with the sensor node’s normal mode of operation.
The measurement samples taken with distinct SNMDs in
SANDbed are not time synchronized, but the sensor nodes
and therefore the measurements can be started simultane-
ously. Measurements in SANDbed are thus side effect free
with regard to communication overhead and operation of the
measured application.

Furthermore, the SNMDs enable the sensor nodes to
control the measurements. Therefore the SNMD passively
probes three specific pins of the expansion interface on the
IRIS nodes. These pins are used by the IRIS platform to
signal the state of the sensor node with LEDs. The SNMD
can then detect and log any change on this pins and accord-
ingly all state changes of the three LEDs. Consequently the
sensor node can signal its state to the SNMD. The SNMD
is currently able to react on this signals with three actions:
Start and stop of a measurement or just logging the event
as a marker in the measurement log. The start and stop
actions enable measuring the energy consumption of just
some certain section of the application, which is interesting
for the evaluation. On the other hand, setting markers in
measurement logs enables by far more detailed insights in
the application flow. For example, the energy consumption
of different parts of the application can be evaluated after
the experiment in retrospect. Signaling the node state in this
way is almost side-effect free because the SNMD detects the
pin changes very quickly, thus the LED have to be powered
on for approx. 12µs to be detected as a signal. This causes

a very small energy consumption overhead of about 1.2µJ
which does not affect the measurement result and can only
be measured with sampling rates above 90kHz.

In our evaluation the markers are used to mark the two
most significant sections in the application. These are the
calculation of the cryptographic algorithms and the trans-
mission of the message. This technique enables us to ana-
lyze the energy consumption of every single cryptographic
calculation and more important to distinguish between the
energy consumed for cryptographic calculations and wireless
communication.

B. Cryptographic Algorithms

In our evaluation we use and compare different cryp-
tographic algorithms. The VaultIC420 has the capability
to compute a wide range of symmetric and asymmetric
cryptographic algorithms, as well as different hash func-
tions. As symmetric algorithms, the VaultIC420 supports the
DES/3DES standard and AES up to a key size of 256 bit.
Moreover, the hardware module supports asymmetric cryp-
tography with RSA, DSA and ECC with multiple key sizes.
As cryptographic services, the VaultIC420 offers Public key
pair generation, digital signatures, encryption/decryption,
message digests, key wrapping/unwrapping, HOTP one-time
password generation and a true random number generator.
The VaultIC420 also offers some software features, like
a secure file system, rights management (e.g., administra-
tor, approved user, Non-approved User) and a FIPS 140-2
identity-based authentication using pass-word (Secure Chan-
nel Protocol v2 and v3). The VaultIC420 is connected to
the IRIS node via the I2C bus (two wire interface) with
INSIDE’s proprietary communication protocol. We therefore
implemented a standard conform I2C driver in TinyOS as
well as INSIDE’s communication protocol. The I2C bus has
a line speed of 100 kbit/s.

In our evaluation, we will focus on the most popular
algorithms that have been proposed for WSNs, AES encryp-
tion/decryption, message digests with HMAC-SHA1 and
digital signatures with ECDSA. For all these cryptographic
algorithms and services, we incorporated software imple-
mentations in our application. For AES, we use the AES
implementation that can be found in the TinyOS contrib
repository. For the computation of SHA1 and TinyECC, we
used TinyECC [2]. We implemented HMAC on top of the
TinyECC SHA1 implementation. While we are aware that
these implementations are not the most optimized imple-
mentations, all the code is publicly available and therefore
often used in many applications or publications.

IV. EVALUATION

In our evaluation, we are first comparing the energy con-
sumption of the different cryptographic algorithms directly.
In a second step, we are going to analyze the energy-
efficiency of the VaultIC420 in a more realistic scenario.
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Figure 4. Initialization costs of the VaultIC420

In our evaluation scenario, we are also analyzing the costs
for transmitting the PIR-event as well as the costs for duty-
cycling the hardware. As MAC-layer protocols, we use IEEE
802.15.4 as well as TinyOS Low Power Listening (LPL).

Before the VaultIC420 can be used, it has to be enabled
and initialized. In our tests, we used a guard time of 500ms
after the start of the initialization before we actually used
the VaultIC420 for any cryptographic computation. While
the value of 500ms might be reduced after optimizing the
TinyOS I2C driver, it guaranteed a stable and reliable usage
of the hardware in our experiment.

Figure 4 shows the initialization costs for AES and
ECDSA. For AES, the initialization costs are 37.44mJ, for
ECDSA slightly higher with 38.45mJ. In our evaluation, all
the symmetric algorithms as well as the algorithms based on
hash functions showed the same initialization costs as AES.
In the following comparison of the cryptographic algorithms,
these initialization costs are not included, we just compare
the energy consumption for the computation of the digests.
For all the comparisons, we used two test vectors of 16 Byte
and 96 Byte. For all tests, we verified that both software
and hardware digest were actually equal and therefore the
algorithms were working correctly.

The first algorithms we compared was AES. We compared
the energy costs of encryption and decryption of the two
test vectors, see Figure 5. In our tests, the software based
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Figure 5. Energy costs of AES encryption/decryption

encryption and decryption was way more energy-efficient
than the hardware-based encryption and decryption. For the
16 Byte test vector, the software implementation consumed
around 10 times less energy(1.267mJ vs. 0.123mJ) for
encryption and 9 times less energy for decryption (1.266mJ
vs. 0.142mJ). For the 96 Byte test vector, the software based
implementation consumed 6 times less energy for encryption
and 4 times less energy for decryption respectively.

Next, we compared the energy consumption of SHA1
and the HMAC-SHA1 message digests. Again, we used the
same test vectors as in the previous comparison. Figure 6
shows the energy consumption the computation of the SHA1
message digests. Again, the software based implementation
was more energy efficient. The software implementation
consumed approx. half as much energy as the hardware-
based approach, 0.681mJ and 1.183mJ for the 16 Byte
vector, 1.363mJ and 2.142mJ for the 96 Byte vector.

The energy consumption of the generation and verification
of HMAC-SHA1 message digests is shown in Figure IV.
For the first time in our evaluation, the VaultIC420 now
outperforms the software implementation in terms of energy
consumption. For both test vectors, the software implemen-
tation now is almost twice as expensive as the usage of
the VaultIC420. In this test case, the additional overhead
for duty-cycling the hardware module and transmitting the
data over the I2C bus combined with the relatively short
computation outperforms the costs for the computation in
software.

As asymmetric cryptographic algorithm, we evaluated
the ECDSA algorithm. Again, we used the same two test
vectors to compare the energy consumption of signature
generation and verification. Figure 8 shows the energy
consumption within our measurements. In contrast to the
previous measurements, the usage of the VaultIC420 is now
the more energy-efficient approach. For both test vectors,
the generation of a 192-bit signature is 16 times more costly
with the software implementation (e.g. for the 16 Byte vector
13.97mJ vs 212.44mJ). The verification of a signature is
only 12 times more costly with TinyECC.
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Figure 6. Energy costs of SHA1 digest generation
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Figure 7. Energy costs of HMAC-SHA1 digest generation/verification

Up to know, we compared the energy consumption of
several cryptographic algorithms directly without accounting
for the initialization costs. We could show, that both SHA1
as well as AES could be used more energy-efficient with a
software implementation. For the VaultIC420, the relatively
slow communication over the I2C interface as well as the
additional overhead in TinyOS make the hardware based
approach more costly. Due to longer computations within
HMAC-SHA1 and ECDSA, the usage of the VaultIC420
now becomes more energy-efficient.

A. Real World Application

So far, we only compared the cryptographic algorithms in
isolation. As this approach is not well suited for a realistic
evaluation, we now compare both the software implemen-
tation and the VaultIC420 in our monitoring scenario. We
compared the energy-efficiency of the generation of a mes-
sage digest/signature of the PIR-event, sending the message
to the base station, receiving the message at the base station
and then verifying the message signature. We compared both
HMAC-SHA1 and ECDSA, as these algorithms seem to be
the most used algorithms within e.g. DTLS. As MAC-layer
protocols, we performed our evaluation with 802.15.4 and
TinyOS Low-Power-Listening.

The results of 15 measurements per configuration are
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Figure 8. Energy costs of ECDSA signature generation/verification

shown in Figure 9. In each run, we measured the energy
consumption of the signature/digest generation, the mes-
sage transmission for the sender and the signature/digest
verification, message reception for the base station. After
the message was transmitted, we powered the VaultIC420
down. In this test, we also measured the energy consumption
of the initialization of the hardware. When using ECDSA
signatures, it can be clearly seen that the VaultIC420 was
way more energy-efficient than the software implementation
with TinyECC for both MAC layer protocols. In fact, the
VaultIC is 4 times more energy-efficient (e.g. 827.17mJ vs.
217.33mJ with 802.15.4). Obviously, the energy consump-
tion with TinyOS LPL is lower than with plain 802.15.5,
as the radio transmitter is powered off if not used. The
results for HMAC-SHA1 are quite different. Here, the
software implementation is still more energy-efficient than
the VaultIC420. With 802.15.4, the software implementa-
tion is 5 times more energy-efficient, with LPL 12 times.
This is quite surprising, as in the direct comparison earlier
HMAC-SHA1 was cheaper in hardware. We found that this
effect was caused due to the additional duty-cycling of the
VaultIC420, the chip was active for a longer time and only
shut down after the message was transmitted successfully.
As the VaultIC420 has a current draw of approx. 21mA, this
caused additional energy costs.

B. Memory Usage

To conclude our evaluation, table I shows the memory
usage after compiling the monitoring application with our
software and hardware implementation. The VaultIC420 uses
16970 Byte of ROM and 2177 Byte of RAM. The software
implementation is almost 3 times bigger with regard to
both RAM and ROM. Note that an IRIS node has only 8
kByte of RAM, but additionally to the static memory of our
application the stack also has to fit within the 8 kByte of
RAM (e.g. for TinyECC up to 800 Byte). It can be clearly
seen that with the hardware implementation it would be
possible to implement a bigger application whereas with
with the software implementation one would have to be quite
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Figure 9. Energy costs of ECDSA signatures and HMAC-SHA1 digests
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Implementation ROM RAM
VaultIC420 16970 Byte 2177 Byte
Software 43426 Byte 5917 Byte

Table I
MEMORY USAGE OF THE SOFTWARE AND HARDWARE IMPLEMENTATION

careful with the RAM usage.

C. Discussion

In our evaluation, we compared the energy consump-
tion of different cryptographic algorithms provided by the
VaultIC420 and by publicly available software implemen-
tations. We could show, that the VaultIC420 can in fact
improve the overall energy-efficiency of an application. But
in contrast to earlier expectations, this is only the case
for when the computations in software are long enough
to compensate for the relatively high energy costs for the
VaultIC420 and its duty-cycling. Without duty-cycling, the
VaultIC420 is not applicable in real-world applications due
to its relatively high current draw of 21mA. As a conclusion,
one has to be careful about choosing a hardware module
when designing a secure application in WSNs. The very slow
I2C bus and the very high initialization time combined with
the relatively high current draw of the hardware module have
to be taken into account. Also, the used MAC protocol and
the communication pattern has to be chosen very carefully.
For symmetric key operations, it might be more feasible to
use a software based approach if there is enough memory
on the wireless sensor node. For the hardware modules, it
might also be important to use or analyze possible power
saving mechanisms, especially if an application uses a lot
of periodic traffic and a little higher latency is not a problem.

V. SUMMARY

Up to our knowledge, we are the first to evaluate the
energy-efficiency of hardware based security mechanisms
in a real-world scenario. We showed how these hardware
modules can save energy, especially when using asymmetric
cryptographic operations. With the VaultIC420 it is possible
to save up to 76% of energy compared to a software based
implementation when using ECDSA as signature algorithm.
In contrast to earlier expectations, the hardware module
is not able to outperform our software implementation for
symmetric algorithms like AES or HMAC-SHA1. Here, the
overhead for using the I2C bus as well as the relatively
high current draw makes the usage of the VaultIC420 more
expensive. We also presented a generic approach for evaluat-
ing the energy-efficiency of WSN protocols and algorithms.
Our approach can easily be extended any other real-world
experiments and evaluations. Future work will include an
evaluation using more duty-cycling MAC layer protocols and
a study of possible queuing and power saving mechanisms
to improve the VaultIC420 duty-cycling.
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brary for Cryptography, http://code.google.com/p/relic-toolkit/

[14] S. Pelissier, T.V. Prabhakar, H.S Jamadagni, R. Venkate-
shaPrasad and I. Niemegeers, Providing security in energy
harvesting sensor networks, IEEE Consumer Communications
and Networking Conference (CCNC), 2011.

565


