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Abstract—While we can observe a fast evolution and innova-
tion of link-layer technologies and networked applications, the
core Internet architecture with TCP/IP remains rigid. New proto-
cols and networking paradigms such as content-centric network-
ing exist but suffer from global deployment issues, acceptance,
and use by application developers. In order to address these
problems, we previously proposed NENA, a framework that aims
at a better decoupling of applications and networks. In this paper,
we evaluate the framework’s concepts and interfaces to determine
the minimum set of invariants needed to operate protocol families
that differ in their basic abstractions and paradigms. As a
basis, we used adaptations of prominent protocols, both existing
and new approaches: TCP, CCNx, BitTorrent, the Bundle-DTN
protocol, an MQTT message broker, and the extensible IP-
replacement XIA. We demonstrated that it is possible to realize
a framework for multiple diverse protocols and paradigms while
introducing only a small set of invariants.

I. INTRODUCTION

Although we observe fast evolution and deployment cycles
below IP and above the socket API, the core network protocol
stack remains rigid. Changes to existing as well as deployment
of new networking protocols are slow at best, as can be
observed with the introduction of IPv6 or SCTP. Big providers,
however, see the need to make changes to currently deployed
protocols and to tailor them to their needs. Google, for
instance, touches core protocols that weren’t changed much
during the past decades (e. g. with SPDY and TCP Fast-Open)
and experiments with new transport protocols such as QUIC,
which recently appeared in Google’s web browser Chrome.
Moreover, content providers could benefit from completely
new networking paradigms such as Content-Centric Network-
ing (CCN). CCN promises better resource utilization for
content distribution than traditional host-to-host or end-to-end
communications. However, such solutions may not be optimal
for every use case. For example, interactive communications
such as VoIP are inefficient in CCN approaches.

We therefore have reason to believe that there is no “one-
size fits all” solution that solves all challenges and provider
needs equally well. Instead, for every challenge or use case, the
most appropriate solution should be used. Thus, we envision
an Internet scenario in which nodes do not only connect to
a single, general-purpose network. Instead, nodes connect to
different networks, each tailored to a specific use case and the
needs of the content provider. Examples for such networks
are online-banking networks (optimized for security), video
streaming networks (optimized for real-time transfers to many
users), content distribution networks (optimized for efficient

data distribution), and online gaming networks (optimized for
low latency). Ultimately, this enables innovation, evolution,
and competition not only at link and application layers, but
also in-between, at the core of the network protocol stack.

To realize such a multi-network approach, a generic frame-
work is required to allow end-systems to easily connect to
different networks and to allow easy deployment of networks.
In addition, the networking API used by application developers
needs to hide networking specifics for a better decoupling
of application and network technologies. NENA [1] is our
proposal for such a framework. NENA runs on every partici-
pating node and provides the following features: (1) concurrent
operation of multiple protocol stacks, (2) component-based
architecture to ease protocol composition, and (3) a unified,
high-level interface for applications.

In this report (which is an extended version of [2]), we
analyze and evaluate the concepts of such a multi-network
framework based on our NENA prototype [3]. To this end,
we implemented several different networking protocols and
paradigms for NENA. Examples are (1) stream and datagram-
based transport protocols with TCP/UDP-like protocols and a
video streaming protocol, (2) content-based networks with a
REST protocol, a CCN, and a P2P file sharing protocol, and
(3) protocol-agnostic network services with a DTN implemen-
tation and a Pub/Sub-oriented message broker.

The results of this architectural evaluation reveal the mini-
mum explicit and implicit invariants that are necessary for a
framework for different networking paradigms. Those invari-
ants describe mandatory interfaces from which the application-
to-network interface is the most crucial one. With those
invariants, we provide indications for the design of similar
APIs and frameworks that aim at overcoming the rigidness of
the TCP/IP stack.

The remainder of this paper is structured as follows: In
Section II, we review selected related work that aim at raising
abstractions at the API level and/or at increasing flexibility
within the network stack. After that, we give a brief overview
of NENA and its API in Section III. In Section IV, we describe
our evaluation approach, which is subsequently used for a per-
use-case analysis in Section V and an overall evaluation in
Section VI. Finally, we conclude with Section VII.

II. RELATED WORK

Related work can be divided into two areas: (1) proposals
for changes of the socket API (the major invariant regarding



network protocol access by applications), and (2) proposals for
extensible base architectures for the Internet (replacing IP).

The need for shifting the API to a more abstract level is
recognized, for instance, by [4]: Here, an extended HTTP is
proposed as the new high-level general-purpose protocol to
be used by any application. Although it lacks the definition
of an API, HTTP commands can be mapped to function
calls. One drawback of this approach is that a web-server is
always required and no peer-to-peer communication is pro-
vided. However, the main conclusion of the authors was that
HTTP commands are sufficient for any use case if extended
by datagram support. Activity within the IETF (name-based
sockets, NBS) also aims at redesigning the socket API to
achieve a better decoupling of applications and network pro-
tocols [5]. While name-to-address resolution, service names,
and transport selection based on service names are considered,
NBS is limited to port numbers for services and to UDP, TCP,
DCCP, and SCTP for transports. In [6], the NBS approach
is generalized: General transport services such as reliable
transport or in-order delivery were extracted in analyzing UDP,
TCP, SCTP, and DCCP. The current socket interface was then
extended to make those general transport services configurable
via socket options, for instance. While this API hides the
actual transport protocol used, it still requires manual name-
to-address resolution and application service selection.

Those API considerations are mostly based on current pro-
tocols. With ChoiceNet [7], XIA [8], and FII [9], approaches
exist that aim at fostering evolution and innovation in allowing
different protocols (or protocol stacks) within a domain or
network. ChoiceNet aims at encouraging alternatives at dif-
ferent layers of the protocol stack. To increase competition
and incentives to build such alternatives, ChoiceNet proposes
an economic model that also takes transit providers into
account. This economic control plane is the main focus of
ChoiceNet. The eXpressive Internet Architecture (XIA) aims
at replacing IP with a new protocol family similar to IP.
The major difference to IP, however, is, that XIA supports
different and extensible communication principals, e. g. host-
based or content-based. XIA also defines a new socket API and
a new addressing scheme via directed acyclic graphs (DAGs)
that allow fallback addressing in the case new principals are
not supported by transit domains. The support for different
communication principals makes XIA an ideal candidate for
a closer analysis which we describe in Section V-H.

Contrary to XIA, the Framework for Internet Innovation
(FII) does not define protocols for the data plane but mostly
concentrates on the control plane. FII describes three core
interfaces: an interdomain interface (for interdomain routing),
an interface between applications and network, and an inter-
face for DDoS protection. For interdomain routing, FII defines
the concept of pathlets which essentially are (virtual) path
segments that can be announced by domains. Pathlets can
specify their own packet format, but for an end-to-end path,
only compatible pathlets can be combined. The application
interface (netAPI) described by FII allows for extensibility by
defining schemas an application can query (e. g., traditional
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Fig. 1. Netlet-based Node Architecture (NENA)

sockets, Pub/Sub, RPC). This way, the API can be extended
with additional semantics. FII describes additional mandatory
interfaces to cope with architectural heterogeneity: for meta-
negotiation (to negotiate a negotiation protocol), for triggering
bootstrapping (i. e. attachment to a network), and for API
schema queries. In total, a lot of smaller invariants are defined
that way, which we think is not necessary (see Section VI-D).

III. FRAMEWORK AND API
In this section, we present an overview of our framework.

A detailed description can be found in [1].

A. Network Attachment

In the multi-network scenario described in Section I, client
nodes dynamically establish virtual links to multiple (virtual)
networks where each is tailored to the needs of the respective
content provider. In this scenario, the network attachment and
protocol retrieval processes need to be automated. When an
application requests a communication service that cannot be
served with currently available network attachments and pro-
tocols, a lookup at a global registry is performed. The result-
ing information contains the necessary protocols, pointers to
repositories where to download those protocols from, and the
points of attachments for the requested network. The network
attachment could be easily realized over the current Internet:
the lookup is done using DNS service records, the repositories
are web servers, the points of attachments are gateways for the
provider’s network, and the virtual links to the network are
established using tunnels. However, with respective support
within the network infrastructure, the networks and virtual
links could also be realized by using virtualization techniques,
which offer better support for QoS. Details of the attachment
process can be found in [10].

B. NENA

The Netlet-based Node Architecture (NENA, Figure 1) is
a runtime framework that allows nodes to simultaneously
connect to multiple networks at the same time. These networks
can be based on different protocol families using specialized
network protocols. Applications access those protocols via
an API that abstracts from networking details: Instead of
providing network addresses and protocols, applications spec-
ify globally unique names as URIs and requirements on the



requested communication service to initiate communication
with the content, service, or host associated with the name.

Protocols or complete protocol stacks in NENA are encap-
sulated in so-called Netlets. Netlets are composed of protocol
building blocks whereas each building block contains either
a complete protocol or a single protocol mechanism. The
Netlet Selection component performs the selection of networks
and Netlets using the requested name and the application
requirements as selection criteria. This is a two-step process,
where first each protocol family is queried to deliver a set of
Netlet candidates that are able to fulfill the request. This can
be seen as a filtering process that takes the URI, API primitive,
and the requirements of the request into account. Second, the
“best” candidate is chosen (e. g., the one providing the best
QoS if such information is available).

Below the Netlet Selection component, the components of
each currently active network are located. Multiple networks
with individual protocol families can be in use on a node
at the same time. A protocol family instance consists of a
set of Netlets, a multiplexer, and a set of network accesses.
A multiplexer constitutes the base-layer of a protocol family,
performs Netlet multiplexing, and – depending on the family
– implements addressing and forwarding mechanisms. A pro-
tocol family that, for instance, realizes a late-binding of names
to addresses, may do name-to-address translation and network
access selection here. Network accesses represent a physical or
logical network interface card. Thus, multiplexing of multiple
virtual networks over the same physical network has to be
realized outside of NENA (e. g. via network virtualization).

For management and maintenance purposes, NENA also has
network independent repository and management components.
The repository component loads and instantiates Netlets and
multiplexers from external sources (cf. Section III-A). The
management component is the central entry point for man-
agement requests, which means that it propagates requests
to the respective protocol families and collects monitoring
information from different levels (node-level, protocol-family-
level, or protocol-level) [11].

C. API

The main goal of the Internet scenario described at the
beginning of the paper is to allow independent evolution
of both applications and networks. However, the networking
API will still be one of the most important invariants in
this scenario. Thus, the API should hide networking details
such as address formats and protocols. Furthermore, the API
is required to be generic enough to cope with different
communication paradigms like host-based or content-centric
communications, and it needs to be flexible with respect to the
introduction of new networks and protocols. Neither should
require change in existing applications. In order to achieve
these goals, we use globally unique names and moved name
resolution and protocol selection below the API.

Based on [12], we implemented an API fulfilling the before-
mentioned goals. Its usage pattern is similar to today’s socket
API: a communication end-point is created with a primitive

Fig. 2. API Overview.

that returns a handle on which read/write operations may be
performed. This basic pattern has proven to be very portable.
Any high-level abstractions such as callback-based interfaces
for event-driven applications can be realized with the target
programming language’s means (as it is done today with the
socket API).

Instead of providing only one primitive to create com-
munication end-points, we provide five (Figure 2): CON-
NECT, GET, PUT, BIND, and ACCEPT. While CONNECT
matches today’s socket call semantics closest, GET and PUT
are introduced in order to support the many contemporary
applications that use a RESTful interface (i. e., HTTP) as
their basic communication abstraction [4]. By providing those
methods at the API level, network services do not need
to use HTTP as their basic communication abstraction, and
eventually new communication paradigms such as CCN can
be easily introduced.

An application providing a service or content as a server
uses BIND in order to announce its availability to serve
requests. Instead of port numbers to identify services, the
application specifies an URI. Here, wild-cards and longest-
prefix matching allows an application to register itself for
a base-URI. Requests with URIs containing this base-URI
are sent to the application. This way, file-server or web-
server applications can be easily created without requiring
the application to implement protocols such as FTP or HTTP.
Upon an incoming request, the serving application calls AC-
CEPT in order to create a new handle. From this handle, the
application can retrieve meta information such as the request
method (GET, PUT, CONNECT), the remote end-point’s URI,
and the requested properties (e.g., content-types understood
by the client application). Generally, CONNECT represents
byte-stream-oriented end-points, while GET and PUT allow
datagram-based end-points with application data unit lengths.

In our prototype, requirements are exchanged as JSON
encoded objects from the application to NENA. A simple ex-
ample for a requirement JSON object is {"content-type":
"image/jpeg","reliable":1}. This provides flexibility
as well as extensibility and allows protocol families and
applications to introduce new requirements.



C1 Basic communication service usable?
C2 Advanced options/services usable?
C3 Naming through URIs suitable?
C4 Services transparent to applications?

TABLE I
API EVALUATION CRITERIA

IV. EVALUATION METHOD AND CRITERIA

Unfortunately, architecture and concept evaluations do not
deliver solid numbers that are easy to compare. We therefore
evaluate our framework based on a methodology similar
to [13]: We perform an analysis of the invariants imposed
on different protocol families by our framework. Invariants in
this context are architectural anchors that cannot be changed.
Invariants are therefore both necessary (i. e. the key purpose of
an architecture) and a burden (since they limit flexibility). The
design of an architecture can be seen as a definition of explicit
invariants. However, some design choices result in additional
implicit invariants that were not necessarily foreseen by the
designers. Those implicit invariants can only be revealed by
a thorough analysis of the architecture and by means of use
cases.

With respect to our framework, this means that we need
to apply different protocol families to our framework that
ideally are very diverse in their intentions and purpose. We
did this by implementing existing and new protocols in a
prototype implemention of our framework. The conclusions
we draw from that should reveal (1) implicit invariants and
(2) unnecessary explicit invariants of our framework. The
result will then be the minimum set of architectural invariants
necessary for a network framework for a diversity of differ-
ent networking paradigms. Although it is impossible to say
whether this set is comprehensive (since we cannot foresee
future networking paradigms), it should cover a broad range
of currently discussed approaches.

The main evaluation criterion is the API itself. To analyze
this major invariant, we define some criteria for different
aspects of the API in Table I: The API was designed as
a single replacement for the current socket-API. The major
semantic additions to the stream and datagram services are
additional primitives and the use of requirements. Criteria C1

and C2 cover whether those primitives are sufficient to exploit
the full potential of the evaluated communication services. As
communication end-points, URIs are used instead of addresses
and port numbers. In addition, the meaning of an URI is not
limited to a service at the application-layer, but could also be
directly addressed content. Whether URIs are flexible enough,
is covered by evaluation criterion C3. Different communication
paradigms may result in different expectations of the users
(applications) of those paradigms. To what degree this can be
hidden by a generic API is covered with criterion C4.

V. ANALYSIS AND EVALUATION PER USE CASE

In this section we briefly describe the protocols and protocol
families we used for our evaluation. In addition, we describe
their particularities especially w. r. t. to our API and highlight

respective findings for our evaluation. Their realizations within
NENA are summarized in Figure 3.

A. Current Protocols

Starting point of our evaluation is how well current com-
munications abstractions fit into our framework. At the lowest
abstraction, an application may request a traditional socket
where it also selects the transport protocol that is to be used.
This can be done with a canonical mapping from the URI to a
traditional socket, e. g., udp://example.com:4200. Raising
the abstractions a bit, we can use the first parts of an URL:
http://example.com is expected to create an end-point
for the application, on which it can expect HTTP formated
messages (i. e., the application implements HTTP by itself).
The framework has to map the service (http) to a protocol
(e. g., TCP) and protocol parameters (e. g., port 80). This map-
ping can be static or additional resolution mechanisms can be
triggered (e. g., by querying the DNS SRV records in order to
resolve the transport protocol and port number). The resolution
of IP addresses and the decision whether IPv4 or IPv6 is used
is also left to the framework. The application is not involved
in IP address or protocol selection: If a web server provider
decides to deploy his service via SCTP/IPv6, client nodes
can automatically use this protocol combination regardless of
the application triggering the request. Thus, already in this
scenario, the name-based approach yields obvious advantages.
Note that this essentially describes what was envisioned by
NBS (cf. Section II). However, the URIs and the addition
of application requirements increase the extensibility of our
approach as will be shown with the following examples.

B. Advanced Transport Protocols

An example we often use for demos is video transport. With
the URI namespace (video://), a lot of semantics is already
defined: the information exchanged will be video data intended
for live streaming. The format of the data is predefined by the
namespace and can be extended with additional application
requirements, e. g. content-type. This knowledge allows
for sophisticated transport adaptations if necessary. If, for
instance, the packet loss experienced during communication
increases, the transport may add information for forward error
correction to the data. Since it knows the characteristics of the
data, it may apply this information only to the base video-layer
in order to save bandwidth.

C. REST

Representational State Transfer (REST) is a concept that de-
scribes the transfer of resources using a stateless API between
clients and servers. HTTP is the most prominent example of a
RESTful API. Our implementation consists of a building block
that, upon a new application request, transfers the requested
URI and the used API primitive to the corresponding server.
Thus, it realizes a minimum protocol that fully features the
API described in Section III-C.
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Fig. 3. Overview of the protocols and protocol families realized with NENA.

D. BitTorrent

BitTorrent is a peer-to-peer protocol that uses chunked
content retrieval. This means files are not downloaded from
a single peer as a continuous, sequential stream. Instead,
files are partitioned into smaller chunks and these chunks are
downloaded in arbitrary order from a set of nodes (a swarm).
Meta information on content is stored in Torrent files, which
are used to eventually retrieve a list of peers that either have
the requested content or are also interested in retrieving it.

We decided to hide the concept of Torrent files from
applications. Thus, we had to add a mapping from URIs to
Torrent files, a feature that is not part of BitTorrent itself. The
semantics of the API primitives are as follows: GET retrieves
an object specified by the URI, and BIND is used to publish
an object with the specified URI, triggering the generation
of a Torrent file. PUT and CONNECT are not supported
by our implementation. CONNECT, however, could be used
for BitTorrent Live, an upcoming P2P streaming protocol.
Retrieval of large objects with GET is a challenge. The
application expects a sequential file stream from the handle,
but the chunk retrieval order is not sequential. This means
that potentially large amounts of data must be cached by the
framework before any data can be passed to the application.

E. CCN

Content-centric networking (CCN) [14] is a communication
paradigm in which content is directly addressed by its name
within a network without specifying any host addresses. When
content is transfered over a network, network nodes on the data
path are able to cache the content. Thus, further requests can
be served by such network caches, which ultimately reduces
network traffic.

We choose CCNx1 as a reference for our CCN imple-
mentation. The implementation consists of three Netlets and
a Multiplexer (Fig. 3). One Netlet realizes the retrieval of
content from the network (collector), another Netlet is used for
the publication of content in the network (publisher). The third
Netlet (streamer) allows running interactive communication
over a CCN network [15], basically implementing retrieval,
publication, and additional components for the coordination of

1http://www.ccnx.org

the data stream. All Netlets operate over a common multiplexer
that manages forwarding, pending interests, as well as content
caches. The API primitives are used as follows: GET retrieves
an object named by its URI, and PUT publishes a new object
under the given URI. After all data from the application
is transfered to the framework when using PUT, the data
is cached locally and the application may close its API
handle. CONNECT and BIND are used to create an interactive
data stream over CCN. Since, however, CCN is not optimal
for interactive streaming, we normally would not offer the
streamer Netlet to applications. Instead, other networks with
different protocol families should be used.

F. DTN

Delay-tolerant networking (DTN) describes communica-
tions between hosts through networks with high and variable
delay or even with intermittent connectivity. It uses a store-
and-forward mechanism: a message (also called bundle) can
be stored on intermediate nodes until the next hop on the path
to the destination node becomes available. One realization of
such a protocol is the Bundle Protocol (BP) [16] which we
took as a reference for a DTN implementation in NENA.

The BP is an application-layer protocol that is designed
to operate on URIs as names and on any protocol family
across different networks (not just TCP/IP). The name-based
addressing and the cross-network feature made the BP an
interesting candidate for our evaluation. The cross-network
feature, however, showed a general interworking issue between
protocol families within NENA: data received via a Netlet
of one family needs to be passed to a Netlet of another
family. We could have built the BP based on building blocks,
replicating its functionality in multiple Netlets for different
protocol families and realize some inter-Netlet communica-
tion. This, however, would have required coordination between
BP instances. For this reason, we decided to extend NENA
by an additional concept named Servlets (Figure 4): Servlets
carry out services that today are located above the transport-
layer. They can bind themselves to URIs (as applications can
do) and react on requests from remote nodes. Optionally,
they may also register themselves at the Netlet Selection
component and offer their services directly to applications
(e. g., as middleware). Basic communications via DTN work
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well with BIND and PUT on DTN-URIs. To allow applications
to specify a lifetime of a bundle, the set of requirements
needs to be extended by lifetime. However, DTN also
allows for optional status reports, which may also be delivered
to applications after a system restart. Although application
status reports are supported, they currently are not delivered
to applications after they disconnect from the framework. This
would require creation of a persistent handle that can be reused
when the application reconnects to the framework at a later
time. Last but not least, the concept of DTN is quite different
from what most applications are used to expect when using a
communications API: Very long delays (e. g., with GET) may
result in undesirable application behavior if the application is
not aware of the DTN.

G. Pub/Sub

A common communications abstraction is the Publish / Sub-
scribe paradigm: Instead of establishing a direct communica-
tion between applications, messages are exchanged indirectly
via a topic. New messages are published to the topic and all
subscribed applications are notified. One protocol realizing
a message broker based approach is the Message Queue
Telemetry Transport (MQTT) [17]. The message broker stores
messages published to a topic and notifies all subscribers.

Since the message broker is a network service that does not
need a local application, we decided to realize it also as a
Servlet (see previous subsection). The broker binds itself to a
wildcard URI, e. g. broker://instance/topic/*. Publish-
ing applications use the PUT primitive with an URI containing
the topic, e. g. topic://instance/topic/temperature.
The MQTT Netlet on the publishing node translates this URI
to the broker URI and forwards the published message. A
subscribing application uses the BIND primitive on the same
topic URI. The MQTT Netlet translates this to a subscribe
request and forwards it to the respective broker. In addition to
this Pub/Sub interface, the GET primitive is used to retrieve
the latest message published to a given topic without creating
a subscription.

With the API primitives BIND and PUT as used in this
example, a multicast service can be utilized as well. Instead
of a message broker, a multicast group identified by the topic
URI is used to distribute messages. BIND triggers a group join,
while PUT sends a message to the group. Whether a broker
(which is able to store messages) or a multicast group (which
only allows direct but efficient forwarding) is used, must be
decided based on the application’s requirements.

H. XIA

As already mentioned in Section II, XIA defines a com-
plete new base architecture replacing the IP protocol family.
Due to its architectural similarity to IP (it defines protocols
corresponding directly to existing protocols such as ARP,
UDP, TCP, DHCP etc.) its implementation design was straight
forward (Figure 3, right): XIP, the base-layer protocol, is
realized within the multiplexer, while the transport protocols
XDP (unreliable datagram transport) and XSP (reliable stream
transport) are realized in different Netlets. The XChunkP
realizes a CCN-style protocol. One key advantage of XIA’s
integration into NENA is the simplification of the API. XIA’s
API is closely related to today’s socket API, which means
that applications need to do name resolution: for a given
URI, applications have to resolve a corresponding DAG before
they can open a socket. In NENA, this step is hidden from
applications, and applications are not even aware of XIA.

However, the support for different principals (e. g. for host-
based or content-based communications) requires application
knowledge. Since with XIA’s API applications are responsible
for providing a DAG, the principal types are known to the
application. With our API, the principal type must be part of
the URI namespace definition, which is in line with the use
of URIs in the previous examples.

VI. OVERALL EVALUATION

In the previous section, we analyzed the realizations of
different protocols and protocol families within NENA. In this
section, we draw conclusions from this analysis and discuss
the impact on the framework’s API and other invariants.

A. API Usage

The API usage and the evaluation criteria as results from
the previous section are summarized in Table II2. Regarding
the primitives, not all are supported by every protocol. This
was to be expected, since protocols are designed for specific
purposes and the API covers a broad range of purposes. When
selecting an appropriate protocol, this already allows a filtering
by the requested primitive.

Based on the API evaluation criteria, we summarize the
API usage as follows: All basic communication services of
the protocols can be used (C1). However, when it comes to
advanced features (C2) of the protocols, such as additional
primitives of HTTP (DELETE, HEAD), those cannot be used
directly and must be realized via requirements. For instance,
to retrieve only meta-data of a resource (HTTP HEAD), the
application has to issue a GET with a requirement such as
metadata. For some primitives, this may not be intuitive to
the application developer. In such cases, we propose to add
an additional layer of abstraction above our API. Similar to
FII’s API schemas [9], this allows for a tailored API in certain
cases. But instead of adding the support for API schemas as
an invariant to our framework, we believe that application-
layer abstractions are sufficient. Regarding naming, URIs as

2Although CCNx has a solution for streaming data, we did not include
CONNECT/BIND since we think that this functionality is not desirable here.



API usage Stream Video REST BitTorrent CCNx DTN Pub/Sub XIA
GET(name, requirements) — — 3 3 3 — 3 3
PUT(name, requirements) 3 3 3 — 3 3 3 3
CONNECT(name, requirements) 3 3 3 3 — — — 3
BIND(name, requirements) 3 3 3 3 — 3 3 3

Criteria
C1 – Basic communication service usable 3 3 3 3 3 3 3 3
C2 – Advanced options/services usable — — 7 7 3 7 3 3
C3 – Naming through URIs suitable 3 3 3 3 3 3 3 3
C4 – Service transparent to application 3 3 3 7 3 7 3 3

Dashes (—) mean that the API primitive is not supported, resp. that there are no advanced options.

TABLE II
EVALUATION OVERVIEW: USAGE OF API PRIMITIVES AND EVALUATION CRITERIA.

names have proven to be suitable (C3). The main reason is
that they allow an extensible way to structure names with their
namespaces and that different semantics can be associated to
those namespaces.

The main concern, however, is transparency of the commu-
nication service offered by the respective protocols (C4). When
using the socket API today, applications make an implicit as-
sumption about the service underneath: direct communication
is possible. When raising abstractions, implicit assumptions
have to be rethought and formulated explicitly. When using
DTN, for instance, the application must be aware of the fact
that a transfer may take hours or days. Thus, the application
should bundle all information at once and should not expect an
immediate feedback about the success of the transfer. A similar
issue, though not that severe, arises when using chunked
transfers (e. g., BitTorrent): The API delivers data sequentially,
so the protocol needs to buffer the data before it can be sent to
applications. A viable solution for this is the use of delegated
transfers as described in [12]: Here, the application tells the
framework where the requested data should be delivered to
(which in this case could be a file system resource).

B. Explicit Invariants

In this section, we review the implications of our design
choices – i. e., our explicit invariants – based on the experi-
ences with a diverse set of protocols.

URIs as names. In some situations, applications do not need
to know anything about the name structure of the object they
are requesting, so the name is just seen as a flat string of char-
acters. However, when it comes to application expectations,
it makes a difference, if the name refers to a content object
or a service. We therefore think that URI namespaces play
an essential role for a name-based API, and that these need
to be standardized. With this standardization, the structure,
the semantics, and the set of requirements of the names are
defined.

API primitives. The basic set of API primitives we use cover
a large part of communication intents. In some cases, additions
to those primitives make sense in order to build higher
abstractions and simplify the life of application developers
(such as an API that directly offers the primitives Publish
and Subscribe). However, we don’t think that it is necessary
to include those in the basic API primitives. Instead, higher

abstractions can be built on top of the basic primitives.
Application requirements. On one hand, application require-

ments are used as the major extension point of the API. On the
other hand, a basic set of requirements must be standardized
to create a common understanding between applications and
protocol stacks. Combined with the standardization of URI
namespaces, this yields a powerful extension point where
new namespaces can be accompanied with a new set of
requirements.

Query interface. When an application invokes a commu-
nication request, the framework needs to query the available
protocol stacks whether they are able to handle the request. In
this query, the name, primitive, and requirements are passed
to the protocol stacks, and those need to respond with a list
of protocol “candidates” to serve the communication request.
For this query, an interface needs to be implemented by each
protocol stack.

Netlets, Multiplexers, and Servlets. The candidates men-
tioned above are components that need a common interface
to pass application and network data to. In our case, these
components are Netlets, and its interfaces need to be imple-
mented by each protocol that is encapsulated in such a Netlet.
A Multiplexer represents a base layer for a protocol stack.
However, we did not identify any relevant difference between
a Netlet and a Multiplexer concerning its handling by the
framework: both are external components retrieved and loaded
on demand. We therefore conclude that the differentiation
between Netlets and Multiplexers is an unnecessary explicit
invariant. However, it defines some structure that aids the
protocol stack designer to distribute functionality. Servlets
were added as additional networking components to allow
middleware-like protocols within NENA. But as with the
Multiplexer, we did not identify any further advantage other
than giving the protocol stack designer a way to structure his
protocol design.

Network attachment. If no candidates for a given communi-
cation request are found, a network lookup, protocol retrieval,
and network attachment process need to be performed. How-
ever, we do not need to define common protocols for such
actions, since those can be realized as well with new protocol
families. The easiest way to start deployment would be to use
the current Internet as a base network for these actions (see
Section III-A).



C. Implicit Invariants

Based on the experiences gained when integrating different
protocols and protocol families, we discovered some additional
implicit invariants. While some of them can be seen as
implementation issues, they are still of practical relevance.

Flow control. Application flow control mechanisms are part
of the respective transport protocols. However, the concrete
mechanism to control the rate at which applications send their
data to the framework needs to be realized by the framework
itself. Thus, there needs to be a flow control interface between
protocols and the framework.

Flows. When receiving incoming data, protocols must be
able to identify the corresponding local application. This
requires a handle or ID for the respective application, or a
reference to the respective flow connector. This ID or reference
only has local validity and must not be used by protocols
outside the host-local context (which is done today with port
numbers). Thus, this flow ID is no invariant by itself, but
protocols need to be careful not to add additional semantics
to it. Instead, flow identification outside the host-local context
should be based on URIs or protocol specific IDs.

User feedback. In some circumstances, a user callback is
necessary, e. g., for authentication or network attachments.
This can be realized either through API events (which has
the disadvantage that applications need to implement handlers
for them) or through operating system requests.

Session management. User sessions on web-sites, for in-
stance, are quite common today. Today, a combination of
client-side states (cookies) and server-side states (hold in a
data store) are used. While such session information can
be exchanged via requirements, additional standardization is
necessary here to describe the exchange format.

D. Non-Invariants

Regarding the explicit invariants, we define fewer than
XIA or FII (see Section II). The main reason for this is,
that we do not consider interworking between networks of
different protocol families – which we believe is not necessary:
Virtualized networks can be administered globally by a single
provider, so no horizontal interworking is necessary here.
Infrastructure providers (which roughly can be seen as transit
providers for those virtual networks) still need horizontal inter-
working between domains. This, however, can be solved on an
individual basis between providers (or between virtualization
technologies) and does not require global agreement.

VII. CONCLUSION

In this paper, we outlined how we realized different existing
and upcoming protocols with NENA and critically analyzed
the invariants of our proposal. We showed that it is possible
to realize a framework for multiple diverse protocols and
paradigms while only introducing a small set of invariants.
From those invariants, the API proved to be the most im-
portant one. The name and requirement-based API offers the
necessary flexibility for supporting a diverse set of protocols.
However, the evaluation showed that advanced communication

services and special use cases need application awareness:
In cases such as DTN, today’s socket-based expectations on
the communication service (e.g., regarding delay or service
availability) may not hold. Thus, we propose to put more
semantic in names and to standardize URI namespaces as
well as namespace specific requirements. Contrary to existing
approaches, we conclude that further invariants for network
interoperability are not necessary. Although network interop-
erability is, of course, required for interworking domains (such
as the current Internet), it is not necessary if provider-specific
networks are used instead of a single global Internet. This can
be achieved with virtualization or tunneling techniques.
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